
the search key contains spaces, you need
to enclose it within quotes. You need to
take some care and watch out for pitfalls
with special characters: *, ?, and ! have a
special meaning for the shell. Another
group of characters (., *, ^, $, and \) is
not interpreted at face value by grep.
Instead, the tool will assume a regular
expression. The upside is that you can
construct powerful and complex queries,
although you might want to avoid using
these characters with grep until you
become more accustomed to the tool.

If you are not sure which file contains
a text passage you are looking for, you
can call grep with a wildcard (*). The
Gutenberg Project’s version of Herman
Melville’s “Moby Dick” comprises of a
collection of text files.

grep white moby.*

will show all the occurrences of the word
white in Melville’s whaling masterpiece
(see Figure 1). The asterisk means any
letters. The shell will replace this expres-
sion with the names of any files in the
current directory with the moby. prefix.

If the files you want to search for is
distributed across multiple directories,

you can use the -r option to tell grep to
search a folder recursively:

grep -r white Melville/works/

will search the works folder and any sub-
directories below it for white.

The Trio – ps, grep, and kill
grep is not only useful for philosophical
and theological text searching, but can
also be used in combination with other
shell commands. If a command produces
a lot of text output, you can use the com-
mand followed by a pipe character (|)
and grep searchkey to filter the output,
retaining only the parts you are inter-
ested in. A typical case where you would

If you can’t remember things, you
should at least put them on your com-
puter.” That is not such a bad idea,

but in contrast to human memory, which
will normally retrieve information stored
in it, quite reliably – with the exception
of final exams of course – it is not always
that easy to find information on a hard
disk. If you forget the filename and
where you stored the file, you might find
yourself wasting a lot of time searching
through directories. Even if you know
exactly which file contains information
you are looking for, this may be of little
use in the case of longer text files.

The shell command, grep, which
locates text patterns within texts, is use-
ful in both cases. In the most simple
case, you call grep with the search key
and the file to be searched. Grep will
respond by outputting all the lines in the
specified file that contain the search key.

Imagine you wanted to search the King
James Bible for instances of “Garden of
Eden”. To do so you would type

grep Eden bible.txt

in the shell, and grep would output the
appropriate passages from the Bible. If

78 December 2003 www.linux-magazine.com

Scholars in the Middle Ages would

have sold their souls for the literary

treasures that abound on the Inter-

net today. Now they simply clutter up

our hard disks a result of indiscri-

minate downloading. Just how do

you go about finding a passage of

text in your digital datastore? The

Shell command, grep, can help you

hunt down that elusive quote.

BY ELISABETH BAUER

Searching Text Files with grep

Digital Fishing for Text

Command LineLINUX USER

Command Action
grep pattern file searches file for pattern
grep pattern *.htm searches all files in the current

directory that end with the .htm
suffix

grep -r pattern folder performs a recursive search in 
folder and its subdirectories

grep -i pattern file ignores case
grep -A n outputs n lines after the line 

containing the searchkey

Grep Overview



use grep in this way is killing a program
that has crashed in the shell.

The ps ax command displays the
processes. You can use a pipe to pass this
output to grep, to apply a filter for the
program you are looking for. Searching
for Mozilla will return the following
results, for example:

> ps ax | grep mozilla
2500 ? S 1:40 /usr/lib/U
mozilla-1.3/mozilla-bin
5645 pts/4 S 0:00 grep mozilla

Grep returns two matches containing
Mozilla – not only the active browser, but
also itself. The part we are interested is
output at the start of each line: the
process ID, which we need to kill the pro-
gram in the shell. We can now type kill
2500 to kill the hanging Mozilla browser.

As shell gurus are notoriously lazy, we
will want to find a way to avoid typing
this command each time we need it: in
other words, we need an alias. Alias
definitions should be saved in .bashrc
in your home directory. This file is 
run each time you open an interactive
shell. Use your favourite editor to open
the file, this could be kwrite ~/.bashrc &
or vi ~/.bashrc in the shell, depending

on your preferences. As vi is non-trivial,
let’s have looked at some simple com-
mands. Typing G tells vi to go to the 
end of the file. You can then type o to
toggle the editor to input mode – in con-
trast to the a and i commands, this tells
vi to start and place the cursor in that
line.

You can now enter your alias in the
last line of .bashrc. Instead of pss you
could use any name you find easy to
remember – but avoid overwriting the
name of an existing command:

alias pss="ps ax |
grep"

Simple as that! You can
then press [Esc] ZZ or
[Escape] :wq to store the file
and quit vi. If you want to
use your new alias in the
current shell, you need to
parse the configuration file.
To do so, type:

. ~/.bashrc

You can now use the pss
programcommand to search
for an active program.

An Address Book for Purists
Grep is extremely flexible. One of my
own favorite applications for grep is a
simple address book.

All you need for this, are the grep,
alias, and cat commands, plus a text file
where you store the names, phone num-
bers, email, and snailmail addresses of
your friends, acquaintances, and rela-
tives. An address entry might be as
follows:

Charly Penguin
+12345 678
tux@linux.org
1 South Pole Road
Tux Village, Antarctica

Now save the file as addressbook in your
home directory, and add the following
alias to .bashrc:

alias tel="cat ~/addressbook | U

grep -i -A 4"

The cat command outputs the address-
book file. The pipe (|) sends this output
to grep. The -i (“case-insensitive”) option
ensures that the search will not be case-
sensitive. And finally, -A 4 tells grep to
return the next four lines after the line
with the match.

Again

. ~/.bashrc

will re-parse your configuration file. In
future, you can type tel name in the shell
to retrieve the address of the person you
are looking for – now that’s what I call
quick! ■

79www.linux-magazine.com December 2003

LINUX USERCommand Line

Figure 1: Melville’s “Moby Dick” is subdivided into a number of a text files. The “moby.*” wildcard tells
grep to search through all the files in the directory

Figure 2: You can use grep to quickly construct a shell-based
address book. The “tel” alias outputs the address entry that
matches the search key


