
how to test the efficacy of your tuning
strategy using simple benchmarks.

Network and Router Issues
Rather than attempting to cure the symp-
toms, admins should instead look for a
systematic approach. The most probable
source of the problem is a network bot-
tleneck, possibly caused by a router or a
line having gone down. tracepath or
traceroute are both useful diagnostic

tools that check where a connection
goes, and how long it takes to do so, by
reducing the Time to Live and waiting
for the routers to respond with a
TIME_EXCEEDED error.

The Time to Live field does not con-
tain a temporal value, but instead
specifies the number of hops that a
packet is allowed to travel across, thus
allowing admins to understand and trace
network connectivity problems. Listing 1
shows an example: the router at hop 4,
ar-essen2.g-win.dfn.de, shows a fairly
slow response, but as 0.2 seconds are not
really all that critical, it must be assumed
that the bottleneck is occurring else-
where.

When users start to complain
about slow download times, it
is time for the Webmaster of

the site in question to start doing some-
thing about it. There are many possible
causes: network bottlenecks, server
overloads, or simply too high a volume
of traffic in user requests. This article
explains the different ways of minimiz-
ing your Apache Web server’s response
and transfer times, and also shows you

There is nothing more annoying than

an Apache server that fails to reply, or

responds too slowly. Webmasters

find themselves increasingly under

pressure to get things running

smoothly. The possible causes are

many and easily as variegated as the

optimization strategies designed to

resolve these bottlenecks.

BY CHRISTIAN KRUSE

Effective tuning for popular Web sites

Fast as an arrow

42 February 2004 www.linux-magazine.com

Apache TuningKNOW HOW

01 ckruse@shine:~ $ tracepath www.defunced.de
02 1?: [LOCALHOST] pmtu 1500
03 1: fogg.defunced.de (192.168.1.1) 2.625ms
04 2: 10.3.11.1 (10.3.11.1) 5.109ms
05 3: gwin-gw-gig00-112.HRZ.Uni-Dortmund.DE (129.217.129.190)

13.403ms
06 4: ar-essen2.g-win.dfn.de (188.1.44.33)

222.119ms
07 5: cr-essen1-ge4-0.g-win.dfn.de (188.1.86.1) 12.839ms
08 6: cr-frankfurt1-po8-1.g-win.dfn.de (188.1.18.89) 24.964ms
09 7: 188.1.80.42 (188.1.80.42) 24.872ms
10 8: gi-0-3-ffm2.noris.net (80.81.192.88) 26.466ms
11 9: ge0-2-151-nbg5.noris.net (62.128.0.209) 40.772ms
12 10: no.gi-5-1.RS8K1.RZ2.hetzner.de (213.133.96.25) 31.012ms
13 11: et-1-16.RS3K1.RZ2.hetzner.de (213.133.96.230) 32.433ms
14 12: srv001.occuris.de (213.133.103.124) 38.802ms

reached
15 Resume: pmtu 1500 hops 12 back 12

Listing 1: Excerpt from tracepath

Module Name
env_module
config_log_
module
mime_module
includes_module
autoindex_module
dir_module
cgi_module
action_module

Module Name
alias_module
rewrite_module
access_module
auth_module
setenvif_module
headers_module
expires_module
php4_module
gzip_module

Table 1: Essential Apache
Modules

The next step is to analyze the server
load. The best way to do this is to check
the server during normal production
operations, using SSH, for example. The
top and ps tools provide a few initial
clues, uptime tells you something about
the current server load. And the Apa-
chetop tool reviewed in last month’s
Linux Magazine [3] also adds an
extremely useful contribution.

Unfortunately, there is no guarantee
that a bottleneck will be permanent; in
fact, sporadic interruptions are quite
common. The answer to this dilemma is
to use a program such as MRTG [4] to
log server load over a longer period of
time. You can take a look at a sample
MRTG installation at [5].

Analyzing the MRTG graphs will typi-
cally reveal that the server is either
overloaded, or the traffic volumes are too
high. The load average and processor
load graphs are a good indicator of the
former case. The graph with the number
of active processes provides a good clue
as to the identity of the miscreant. If the
number of processes remains constant,
you should start looking for a program
that has gone wild.

If the number of processes varies,
you should check for CGI scripts hogging
resources. The Apache Access log
and the process list (top) for heavy load
periods are useful in this case. They tell
you which URLs have been requested
most often. This kind of information
allows admins to locate the script or
program responsible for the heavy load.
A high traffic volume will leave a dif-
ferent footprint. The server’s load graphs
will reveal consistently low values,

but the network
traffic values will
be noticeably too
high.

Is Your Server
Overloaded?
The fact that your
Web server is
overloaded, is not
necessarily any-
thing to worry
about. Large and
popular docu-
ments, such as
SELFHTML, al-
ways tend to

provoke a heavy load. And in some
cases, there is very little an admin can do
about it. The first thing to consider, is re-
compiling the software with appropriate
compiler flags set, as many of the popu-
lar distributions compile the Apache

packet to run on a 386 CPU for compati-
bility reasons.

Attentive sysadmins will tend to com-
pile mission-critical software like Apache
themselves, ensuring that the appropri-
ate compiler flags are set when they do
so. If you have an Athlon server (see the
“Test Environment” box below), you
might like to use the same flags as yours
truly:

CFLAGS="-march=athlon U

-fexpensive-optimizations -O3"

These flags tell the compiler to create
machine code that will run only on
Athlon CPUs. This allows the compiler to
use optimization methods that cost a lot
of time. The optimization level is set to
three. But it should be obvious that these
compiler flags are no replacement for
manually optimizing the algorithm in
question.

43www.linux-magazine.com February 2004

KNOW HOWApache Tuning

Benchmark tests are used to determine the
efficacy of optimization approaches. It
makes sense to measure the time the server
takes between receiving a request and serv-
ing up the response.To test this, I set
up two PCs and attached them to an
internal 100 Mbit Ethernet wire. My
server PC (an AMD Athlon 600 with 64
MBytes of SD-RAM) runs FreeBSD 4.6
and Apache 1.3.27.

The Web server characteristics
described in this article also apply to
Apache 2, unless a specific reference to
the contrary is made.To simulate ISDN
speeds, and thus make differences in
response times more visible, I also
installed Mod_bandwidth.

The client machine (an AMD Duron
800 with 312 MBytes SD-RAM) runs

Gentoo Linux 1.4 with a Kernel 2.4.22,
and Perl 5.8.0. My major benchmark-
ing tool is a Perl script I wrote myself;
you can download the script at [1]. Fig-
ure 2 shows an excerpt.The script
downloads the URL passed to it as an
argument, along with any references
needed to render the results.The
script measures the time required to
do this (see Figure 3).

The second benchmark tool used here
is supplied with the Apache server: ab
[2]. It is mainly designed for load
analysis.To allow this, the tool simu-
lates a large number of simultaneous
requests, and measures the number of

requests per second handled by the server
and how long Apache takes to handle them.

Test Environment

Figure 2: Excerpt from the author’s Perl benchmark
script, which you can download from the Linux Maga-
zine Web site

Figure 3: The author’s benchmark script in action. It
downloads the URL passed to it and measures the time
required to do so

Figure 1: Changing the connection Timeout in the Apache configuration file
can boost performance

Background: For each request it han-
dles, Apache needs to check every single
active module, to find out if it is required
for the request. But be careful if you
have Apache 2: the config_log_module is
called log_config_module in this case.

Experience shows that reducing the
value of the connection timeout in the
Timeout directive makes a big difference
– after all, do you really need to wait 300
seconds for a new packet and/or
request? Sluggish requests simply tie up
the child process preventing it from
accepting new connections that Apache
could have handled in the meantime. A
timeout of between 120 and 150 seconds
should be fine, even for slower Internet
connections (see Figure 1).

Admins should also ensure that
KeepAlive is set to On. This directive
enables or disables Keep Alive requests.
Keep Alive requests allow clients to use
the connection for multiple requests.
Otherwise the client needs to set up a
new connection for each new request –
and this entails going through a com-
plete handshake, and wasting three
packets. Assuming 50 requests per sec-
ond, that would be 9000 packets per
minute just to set up connections. Thus,
assuming that three clients generate
these 50 requests, setting KeepAlive to
On would reduce the number of connec-
tions per second to three, and thus the
number of packets for creating these
connections to 540.

Reducing Timeouts
The KeepAliveTimeout should also be a
fairly low value: 15 seconds is typically
fine. The MaxSpareServers directive
restricts the number of idle httpd
processes. That is, the number of httpd
processes drops during periods with light
loads.

This also means that Apache will need
to fork a few new httpd processes before
it can handle a heavier load. In the case
of services plagued by load issues,
admins are well advised to comment out
the directive, and monitor the results,
to see if the server’s responsiveness
improves. Make sure that you leave
MaxSpareServers set, unless your server
is continually under fire, as the number
of httpd processes will otherwise in-
crease continually.

The MinSpareServers directive is a dif-
ferent thing altogether. It specifies the
number of idle processes the server
should have. These processes are a kind
of buffer for peak loads. Note that this
behavior depends on your choice of
MPM module [6, 7], for Apache 2. If you
use the traditional Prefork model, there
is no change. But if you use the Worker
MPM, the directive names in MaxS-
pareThreads and MinSpareThreads are
different.

In this case the value refers to the
number of threads per Apache process.
Generally speaking, Apache 2 should
have less trouble creating new threads

Many Apache modules create tempo-
rary files while handling requests; PHP
creates disposable files to facilitate ses-
sion management. This is why the next
optimization step moves the /tmp direc-
tory to a memory disk, typically with a
size of around 128 MBytes. Although
Linux does use efficient caching strate-
gies, the RAM disk will often ensure
better server response times.

Tuning the Apache HTTPD
Apache itself offers the greatest potential
for optimization. Although the basic
configuration is fairly useful, some distri-
butions tend to load too many modules.
For normal operations. Only the modules
detailed in Table 1 are really necessary.
Removing any superfluous modules will
reduce the size of the HTTPD process
and the time needed to handle a request.

44 February 2004 www.linux-magazine.com

Apache TuningKNOW HOW

01 Concurrency Level: 10
02 Time taken for tests: 2.842457 seconds
03 Complete requests: 100
04 Failed requests: 0
05 Write errors: 0
06 Total transferred: 11023620 bytes
07 HTML transferred: 10994986 bytes
08 Requests per second: 35.18 [#/sec] (mean)
09 Time per request: 284.246 [ms] (mean)
10 Time per request: 28.425 [ms] (mean, across all concurrent

requests)
11 Transfer rate: 3787.22 [Kbytes/sec] received
12
13 Connection Times (ms)
14 min mean[+/-sd] median max
15 Connect: 0 0 1.0 0 5
16 Processing: 39 278 342.6 105 1012
17 Waiting: -83 -22 19.1 -21 1
18 Total: 39 278 342.8 106 1012

Listing 2: Results prior to tuning

CGI scripts running on your Web server need
a lot of careful attention.These indisputably
useful programs, often cause noticeable per-
formance issues, as launching them requires
the server to load bulky interpreter binaries.

I have removed any references to existing
sites to protect the innocent, but the follow-
ing example is a real-life case study: A Web
server running somewhere in Germany has
a very large and complex Perl CGI script. As
the server was hit by load issues, the Web
team responsible for it, developed a new
routine for the script that checked the Load
Average, and killed the CGI process in case of
overloading.This proved to be a highly inef-
ficient approach: the peak load was still far
too high, and launching the interpreter and
interpreting the script consumed masses of
resources.

The next step the programmers took, was to
write a 804 byte binary in C, that made a
decision based on performance. If the load
was too high, the binary issued an error
message, if not, the binary launched the
original CGI script.This proved to be effec-
tive, as the system handled peak loads far
more gracefully after this point.

Now if the programmers at this site had
taken this a step further and written a
mod_loadavg Apache module, they could
have reduced the load even further. Mod-
ules of this type, remove the need to call the
interpreter.There are Apache modules for
almost every language: mod_perl, mod_php,
mod_ruby, mod_fastcgi and so on.

Standard CGIs:
Performance Killers

than new processes, as a thread does not
have its own memory area, which
Apache would need to copy. Also, a
thread does not have a process ID of its
own, and instead shares a common ID
with the other threads.

Finding a Compromise
The next directive that can affect perfor-
mance is MaxRequestsPerChild, which
terminates a child process after a certain
number of requests and forks a new
child process. Unfortunately, some
libraries and modules are susceptible to
memory leaks, and this is why you need
the directive. But you should test your
own system, to find out whether it is
affected, before enabling the directive.

If you notice that the number of
Apache processes has grown rapidly dur-
ing a period of heavy load (you can use a
tool like top to do this), you have very
little alternative but to enable the direc-
tive. In this case you should set a high
value. The value itself will depend on
your system configuration and is a ques-
tion of trial and error. The value is a
compromise between performance and
memory resources.

The HostnameLookups directive is crit-
ical. If you are looking for speed, it has
to be set to Off. Enabling hostname
lookups would force a reverse DNS
lookup for each request. This in turn
causes at least one DNS request and
would probably lead to more DNS

requests to nameservers at remote loca-
tions on the network. This not only
results in a lot of traffic, but also wastes
a lot of time.

How Effective is Apache
Tuning?
It is hard to quantify the effect of opti-
mization measures. The script at [1] is
not useful for testing this, as it does not
place any load on the server. However,
the Apache benchmark ab (Version 2,
[2]) should supply the results you need
(see the “Test Environment” box). Run
the benchmark before you start tuning:

ckruse@shine:~ $ ab2 -n 100 U

-c 10 http://rain/article/

The program initiates 100 request
phases, launching ten requests simulta-
neously in each phase. Listing 2 contains

an excerpt from the results, showing the
relevant values. The Requests per second
and Time per request figures are interest-
ing: approximately 35 requests per
second and 28 milliseconds per request
on average. Following this, fine tune
your server and repeat the benchmark
with the same pattern, as shown in List-
ing 3. It looks like the tuning steps have
been successful in this case: 100 percent.
A cautious estimate would be that the
site should be able to handle twice as
many requests as previously.

Optimization at HTTP Level
Optimization at HTTP level is mainly
concerned with reducing the amount of
traffic and the number of requests. This
can be achieved by using caching and
conditional headers. Caching headers tell
the User Agent (UA) that it does not need
to re-request certain content for a certain
period of time. This is useful for static
HTML or CSS files. The Expires header
indicates the point in time when a docu-
ment should be regarded as obsolete and
thus re-requested. See Listing 4.

If you want to tell the UA – whether
this be a browser, a proxy, or another
client – that the document is obsolete
immediately after Apache has served it
up, and thus needs to be re-requested
every time, set the value of this field to
the value in the Date header. Values such
as now or 0 are invalid, but they are
accepted to improve error tolerance and
equated with an obsolete value. It is then
up to the client to honor this informa-
tion, or not.

The Cache-Control header is more
strict. It specifies caching instructions –
that any RFC conform HTTP client must
honor. The syntax for Cache-Control is
slightly different from Expires. The valid-

45www.linux-magazine.com February 2004

KNOW HOWApache Tuning

01 ExpiresActive On
02 ExpiresByType text/html "access plus 1 month"
03 ExpiresByType text/css "access plus 6 month"
04 ExpiresByType text/javascript "access plus 6 month"
05 ExpiresByType image/gif "access plus 6 month"
06 ExpiresByType image/jpeg "access plus 6 month"
07 ExpiresByType image/png "access plus 6 month"
08
09 <Files ~ "\.(js|css|gif|jpe?g|png)$">
10 Header append Cache-Control "public"
11 </Files>

Listing 4: Setting the Expires and Cache-Control headers

01 Concurrency Level: 10
02 Time taken for tests: 1.58400 seconds
03 Complete requests: 100
04 Failed requests: 0
05 Write errors: 0
06 Total transferred: 11290258 bytes
07 HTML transferred: 11261068 bytes
08 Requests per second: 94.48 [#/sec] (mean)
09 Time per request: 105.840 [ms] (mean)
10 Time per request: 10.584 [ms] (mean, across all concurrent

requests)
11 Transfer rate: 10416.67 [Kbytes/sec] received
12
13 Connection Times (ms)
14 min mean[+/-sd] median max
15 Connect: 0 0 0.3 0 3
16 Processing: 34 98 21.1 95 155
17 Waiting: -102 -46 17.9 -42 0
18 Total: 34 98 21.0 95 155

Listing 3: Results after tuning

The User Agent stores these values,
and formulates a request accordingly, as
you can see in Listing 6. As you will
note, the server simply responds with
304 Not Modified and a few other head-
ers, but it does not serve up any content.

There are few caveats with respect to
CGI scripts here: the CGI script should
send a Last-Modified or ETag header to
allow the browser to use its conditional
get algorithms. Also, the script will need
to parse the header. And it is required to
format the date appropriately (typically
as the number of seconds elapsed since
1970), and then check whether the ver-
sion specified by the If-Modified-Since
header is obsolete.

This also applies to the If-None-Match
header: the script evaluates the check-
sum and thus ascertains whether the
version described in the header is obso-
lete. Hashing algorithms such as MD5
are useful as checksum algorithms. The
CGI environment variables, HTTP_IF_
MODIFIED_SINCE and HTTP_IF_NONE_
MATCH, provide access to the values in
both headers.

20 Times the Performance
The script ([1], see the “Test Environ-
ment” box) can be used to test the
efficiency of the tuning measures
described thus far:

ckruse@shine:~ $./measure.pl U

--base-url http://rain/article/
Getting http://rain/article/...
[...]
Time elapsed: 4.642203 seconds

Enabling the conditional header means
that the whole request can be processed
in less than a second.

ckruse@shine:~ $./measure.pl U

--send-if-modified-since U

--send-if-none-match --base-urlU
http://rain/article/
Getting http://rain/article/...
[...]
Time elapsed: 0.181876 seconds

Compression Techniques
Content encoding is the other method of
tuning HTTP. This requires the UA to
send the Accept-Encoding header when
requesting a document. The header
specifies the type of processing accept-
able for the content, and can contain
values such as gzip [9] or compress. Both
values specify algorithms that compress
the document content before the server
serves it up, and then expand it again
clientside.

The method saves a lot of traffic – up
to 90 percent. But there is a major down-
side: first of all, not all UAs can handle it
– Netscape 4 sends Accept-Encoding:
gzip, although the browser does not han-
dle this method correctly. Secondly,
compression will impact your server’s
performance, as the Apache server needs
to compress each document before serv-
ing it up. And thirdly, the technique can
suffer from a lack of acceptance at vari-
ous places en route: many content filters
simply remove the Accept-Encoding
header.

And most proxies do not react kindly
to the Vary header that compression
requires. Vary lists the headers that
depend on this variant of the request.
Older versions of the Squid HTTP proxy
disable any kind of caching and re-
request the document every time – this is
not really in the Web site operator’s best

ity of a document is specified by max-
age=value. The value is a validity period
in seconds from the point in time shown
in the Date field. Specifying a value of 0,
indicates that the document should not
be cached at all, however, this setting is
not recommended.

Supporting Ignorance
The public attribute in the Cache-Control
header can provide a speed boost under
certain circumstances, as it provides
proxy caches with more freedom choice.
If a proxy with this instruction receives a
request that should not be cached – for
example an authenticated request that
uses HTTP-Auth, it can ignore this and
cache anyway.

Both headers require the mod_expires
and mod_headers modules. Admins can
use mod_expires to specify when a docu-
ment will expire. However, the module is
not aware of the public attribute, and
this means you also need the mod _head-
ers module, to allow image, Javascript,
and CSS files to leverage the public
attribute. Listing 4 shows an example of
a HTTP request to a server configured in
this way. The request shown in Listing 5
should be cached for one month by the
UA, without the UA having to contact the
server in the meantime.

However, experience shows that
caching UAs tend to cache results for a
while, typically about two days, and then
use a conditional header to ask whether
the cached version is up to date, or if
they should request an update. The If
header group is used to do this. Opera-
tions such as If-Match, If-Modified-Since,
If-None-Match, If-Range, and If-Unmodi-
fied-Since are permissible.

However, in the wild, you will nor-
mally not see any of these apart from
If-None-Match (Opera Version 7, or later,
and Mozilla), and If-Modified-Since
(Mozilla, Opera Version 7, and Internet
Explorer 5.5 or later). The other headers
are explained at [8].

Conditional Headers
Both conditional headers refer to fields
that the server has served up due to a
prior request. If-Modified-Since refers to
the Last-Modified field, which contains
the last change date for the document.
The If-None-Match header refers to ETag,
a checksum for the document.

46 February 2004 www.linux-magazine.com

Apache TuningKNOW HOW

01 ckruse@shine:~ $ telnet rain
80

02 Trying 192.168.1.3...
03 Connected to rain.defunced.de.
04 Escape character is '^]'
05 GET /article/ HTTP/1.1
06 Host: rain
07 Connection: close
08
09 HTTP/1.1 200 OK
10 Date: Sun, 09 Nov 2003

19:52:04 GMT
11 Server: Apache/1.3.27 (Unix)

PHP/4.2.3 AuthMySQL/2.20
12 Cache-Control: max-age=2592000
13 Expires: Tue, 09 Dec 2003

19:52:04 GMT
14 Last-Modified: Tue, 04 Nov

2003 23:50:42 GMT
15 ETag: "a3a068-1a9d9-3fa83b52"
16 Accept-Ranges: bytes
17 Content-Length: 109017
18 Connection: close
19 Content-Type: text/html
20
21 <I>HTML contents<I>

Listing 5: Sample HTTP
Request

interests. Thus, you should carefully
consider the pros and cons of using
mod_gzip with respect to your target
group.

Tuning at HTML Level
HTML files provide the greatest opti-
mization potential. A great deal of HTML
code – especially in the commercial
sector – is provided by HTML de-
signers using WYSIWYG editors like
Dreamweaver. And that is exactly what
the code looks like. You can often
shorten the code by up to 50 percent,
without affecting the rendered version,
of course. Generally speaking, it makes
sense to remove as many formatting
sequences as possible from the HTML
files, and place them in CSS files instead;
this is something that WYSIWYG editors
actually can do – much in contrast to
their users.

In contrast to embedded formatting
sequences, CSS files only need to be
loaded once, and this means that the
HTTP server only needs to transmit the
formatting sequences once. Also, try to
avoid superfluous nesting of tables, such
as generated by Dreamweaver. Web

designers should not accept any code
generated by programs of this kind, as is,
but instead use HTML-Tidy [10] for
example, to tidy up the code.

Images and Graphs
Web designers can often save a lot of
traffic by paying attention to images. The
major formats, which nearly all browsers
support, are gif, jpeg and PNG. Simple
line drawings and cartoons are the
domain of gif, whereas jpeg is used for
photos and high-color images; however
the jpeg algorithm does impact image
quality.

The gif format is particularly unsuit-
able as its color palette is restricted to
256 colors. Any other colors are created
by dithering, and this tends to inflate the
file size unnecessarily. If quality is your
major concern, the compressed PNG for-
mat is your best option, although the file
size may be slightly larger than that of a
comparable jpeg file.

You often see files published at a very
high resolution, and scaled down on the
HTML page using width and height.
There are two disadvantages to this
approach: for one thing, it means trans-
ferring unnecessarily large image files
across the wire. And for another, it
impacts the viewing quality in the Web
browser, as typical rendering engines
will produce far inferior results to graph-
ics programs when reducing image files.

Today’s Web designers do not need to
go to the opposite extreme, as used to be
the case in the age of 14,400 baud
modems and expensive Web space. Peo-
ple used to scale images down, and
allow the browser to scale them back up
again. But again, typical clients perform
this task inadequately. It makes sense to
choose a scale that allows image files to
be viewed at their original size – this is a
perfect compromise between file size
and quality.

Spaces and Newlines
As HTML is a free format language to a
larger extent, you can remove any syn-
tactically superfluous space and newline
characters. The UA does not really care if
your HTML code is nicely formatted or
haywire. This provides more scope for
reducing traffic. This is similar to con-
verting Windows newlines to Unix
newlines, which occupy one byte rather

than two. Any modern editor should be
able to handle this task.

Apache 2 users can enable the
mod_blanks module to handle this task.
Users of other versions can achieve a
similar effect by using two separate ver-
sions: one for development, and another
for publishing. After each change in the
developer file, simply run a short script
(see [11] for an example) against the file.
This removes any space and newline
characters from the final version.

If you apply all of these tuning meth-
ods to your site, you can look forward to
better performance for medium to high
load servers. But you will need to per-
form before and after benchmarks, using
the techniques discussed in this article,
to find out exactly how big the benefit is
for your system. ■

47www.linux-magazine.com February 2004

KNOW HOWApache Tuning

[1] The author’s benchmarking script:
http://www.linux-magazin.de/Service/
Listings/2004/01/Apache-Tuning

[2] Apache benchmarking tool: http://httpd.
apache.org/docs/programs/ab.html

[3] Charly Kühnast,“The Sysadmin’s Daily
Grind: Apache Tracking”: Linux Magazine,
Issue 38, p 54

[4] Multi Router Traffic Grapher:
http://people.ee.ethz.ch/~oetiker/
webtools/mrtg/

[5] Sample Installation of MRTG:
http://www.defunced.de/mrtg/

[6] Multiprocessing Module: http://httpd.
apache.org/docs-2.0/mpm.html

[7] T Grahammer,“Apache 2.0 – Rules of Suc-
cession”: Linux Magazine, Issue 24,
October 2002, p29

[8] HTTP RFC:
ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt

[9] U. Keil,“Dynamic Webpage Compression
with Mod_gzip and Apache”: Linux Mag-
azine, Issue 24, October 2002, p26

[10]HTML-Tidy:
http://sourceforge.net/projects/tidy/

[11] Script for removing spaces:
http://www.defunced.de/blanks.pl.gz

INFO

01 ckruse@shine:~ $ telnet rain
80

02 Trying 192.168.1.3...
03 Connected to rain.defunced.de.
04 Escape character is '^]'.
05 GET /article/ HTTP/1.1
06 Host: rain
07 Connection: close
08 If-Modified-Since: Tue, 04 Nov

2003 23:50:42 GMT
09 If-None-Match: "a3a068-1a9d9-

3fa83b52"
10
11 HTTP/1.1 304 Not Modified
12 Date: Sun, 09 Nov 2003

20:28:43 GMT
13 Server: Apache/1.3.27 (Unix)

PHP/4.2.3 AuthMySQL/2.20
14 Connection: close
15 ETag: "a3a068-1a9d9-3fa83b52"
16 Expires: Tue, 09 Dec 2003

20:28:43 GMT
17 Cache-Control: max-age=2592000
18
19 Connection closed by foreign

host.

Listing 6: A conditional GET

Christian Kruse stud-
ies computer science
in Dortmund. As a
freelance administra-
tor, he is responsible
for a number of Linux
and FreeBSD servers.TH

E
AU

TH
O

R

