
Administrators who collect net-
work and server health data, and
visualize that data, are likely to

diagnose bottlenecks and potential over-
load scenarios quickly, and without
needing to manually search through log-
files. There are any number of useful
monitoring tools available for this task,
such as Nagios and Big Sister, which
Linux Magazine covered in recent issues
[1], [2].

But this article is not about using those
tools; instead we will be reverting to util-
ities that most distributions provide as
part of their standard armory. We will be
adding a few simple, but effective, Bash
scripts to help you keep track of what is
going on. The real advantage that this
toolbox provides in comparison to major
network management tools is that you
can configure it to reflect your own IT
landscape, and individually modify the
applications it contains. But there are
more benefits:
• You can generate non-standard statis-

tics.
• Besides the results, you also get to see

the raw data, and this allows for multi-
ple analysis approaches.

• Shorter learning curve for the admin.
• To a genuine Linux/Unix enthusiast,

scripts are far more attractive than
ready-to-run binaries.

Of course we can’t just ignore the dis-
advantages:

• The toolkit takes more time to develop
to production level.

• Less features.
• If the toolkit proves its use, its devel-

oper will be stuck with maintaining it
for the rest of his career.

Livecheck – server response?
Let’s cover the most important task first:
admins first need to check if all their
servers are alive, and if the services that
should be running on these servers actu-
ally are. A simple Bash script called
simple_livecheck.sh will be a big help in
doing so – but a few directories and files
are required to support the script. The
working directory is called /usr/local/
shellscripts/livecheck. After creating the
working directory, create a subdirectory
called etc below that level, and use your
favorite editor to create a file for each
server. The filename must adhere to the
following convention: IP_address_name.
SLD.TLD; this happens to be 10.0.0.2_
funghi.gondor.com in our example. Then
add the ports that should be open for
normal server operations:

25
80
110

Follow the same pattern for any other
servers you need to monitor; the other
server in our example is 10.0.0.12_inn.

kuehnast.com, and the only port we
need to monitor for this machine is 119.

Nmap – a Useful Tool
The script loops through a list of files that
ping the servers to check if they are alive.
In this case – and admins will tend to
hope that this is the case – the script then
uses nmap [3] version 3.00 to check the
individual ports. SUSE Linux 9.0 users
will need to watch out for an annoying
bug: nmap will not run with root privi-
leges.

Listing 1 shows the Bash script (Perl
might provide more elegant solutions for
some details – and I’m sure that Michael
Schilli, the author of our Perl series, will
be shaking his head when he reads this
article). The server in our example gener-
ates the following messages:

Server 10.0.0.2 (funghi.U
kuehnast.com): ping OK
10.0.0.2: Port 25 is up
10.0.0.2: Port 80 is up
10.0.0.2: Port 110 is up

I manually halted Apache before repeat-
ing the test, just to double-check:

Server 10.0.0.2 (funghi.U
kuehnast.com): ping OK
10.0.0.2: Port 25 is up
10.0.0.2: Port 80 is down
10.0.0.2: Port 110 is up

When a server goes down, it should

be your tools, rather than your users,

that tell you. The toolset in this

article monitors your server and the

services it offers, and generates load

analysis figures.

BY CHARLY KÜHNAST

Monitoring: Using distribution tools to detect server and network bottlenecks

Hands-On Admin

57www.linux-magazine.com February 2004

SYSADMINNetwork Monitoring

When the script finds a dead host, it
simply creates a file with that host’s IP in
this directory. In case of a dead service,
the script calls the file IP_Port.

The mere existence of this file (it does
not need any content), tells the script
whether the server or service has just
died, or was down when the script ran
previously, if the server or service has
just gone back online, or if the server or
service was and still is in a good state of
health. A ready-to-run sample script is
shown in Listing 2 – of course, you can
use cron to launch it. The daily availabil-
ity information that the script provides

for your servers and services, including a
history, tells you a lot about the stability
of individual components and allows
you to identify weak points that the peo-
ple in charge of servers and networks
can address by analyzing the logfiles.

Of course the scripts provide lots of
leeway for improvement and enhance-
ments that would benefit both your
servers’ availability and your personal
well-being.

Server Load & False Positives
The next thing admins are interested in,
is how hard their servers are working.
There are a few tools that come to mind,
such as MRTG [5], RRDTool, and Cacti. I
opted for the latter (version 0.6.8), com-
bined with RRDTool 1.0.40. Cacti allows
a fairly flexible configuration and is not
too complicated; refer to [6] for a
detailed description. Cacti provides both
network and system load statistics (Load
Average), and these are the most impor-
tant parameters if you are interested in
system health statistics. Load graphs
allow you to recognize abnormal system
behavior, such as peak loads, at a glance.
Cacti recently helped yours truly out of
spot after I had shot myself in the foot
(metaphorically speaking) with a well-
meant script. The script in question was
a cronjob on my own Web server. It read
/proc/loadavg at five minute intervals,
warning me if the average load increased
to over 8.0 within a certain period. This
happened last Tuesday night. The Cacti
graph shown in Figure 1 indicates that
the system load peaked abruptly.

The graph that shows the network
interface load is well within normal lim-
its, so I immediately ruled out an abrupt
increase in HTTP or FTP access. As the

Exactly what I expected. But even new-
bie admins will appreciate that echoing
to the console is a suboptimal form of
alerting. It would make more sense to do
without the echo and write a syslog entry
instead, because in a real-life situation,
the script would not be launched manu-
ally, but would run as a cronjob. Come to
think of it, an email, SMS or pager alert
would be even more practical [4].

Multiple Alert Paths
Your choice of approach to alerting will
be driven by the role your server plays.
One thing to avoid is alerting every 5
minutes by mail or CB radio when the
cronjob is triggered. No matter how cool
your cellphone ring tone may be, contin-
uous repetitions are a nuisance. A few
modifications to the script are required.
When called, it must check:
• If a host or port is down, was it down

when the script ran previously?
• If everything is okay, was everything

okay last time, or has a dead host or
port come back to life?

To prepare for the enhanced alarm_
livecheck.sh script, the next step is to
create a subdirectory called deadhost
below /usr/local/shellscripts/livecheck.

58 February 2004 www.linux-magazine.com

Network MonitoringSYSADMIN

01 #! /bin/bash
02
03 # A script to see if the

server is responding
04 # and available for use
05
06

WDIR=/usr/local/shellscripts/l
m-livecheck

07
08 for i in `ls $WDIR/etc/`; do
09
10 ## extract IP and fqdn from

file name
11 IP=`echo $i|cut -f1 -d"_"`;
12 NAME=`echo $i|cut -f2 -

d"_"`;
13
14 ## ping host to see if it's

up
15 PING=$(/bin/ping -c2 -q -w2

$IP|grep transmitted|cut -f3 -
d","|cut -f1 -d","|cut -f 1 -
d"%")

16 if [$PING -eq " 0"]; then
17 ## Host is up
18 echo "Server $IP ($NAME):

ping OK";
19
20 ## now checking the ports
21 for j in `cat

$WDIR/etc/$i`; do
22
23 RET=`/usr/bin/nmap -r --

host_timeout 2500 --
initial_rtt_timeout 2000 -p $j
$IP|grep $j/tcp|cut -f1 -
d"/"`;

24
25 if [-z $RET]; then
26 echo "$IP: Port $j is

down";
27 ## Alarm: Port down ##
28 else
29 echo "$IP: Port $j is

up";
30 fi
31 done
32
33 else
34 echo "Server $IP ($NAME):

no response";
35 fi
36 done

Listing 1: simple_livecheck.sh

Figure 1: The peak load on the Web server indicates that the server’s backup tool wastes system
resources. Admins would do well to consider this point when defining alerts. For example, loadavg > 5.0
for Alarm at this point could set your cellphone off every night while your backup job is executing

Web server does not run anything wor-
thy of note, apart from those two
services, this left only one potential load
hog candidate: the backup process. To
cut a long story short, I now use a
backup solution that is more careful with
my system resources.

Collating Network Load
One of Cacti’s important features is its
ability to collate the total load for one or
multiple network interface(s) – and it is
a Good Thing to be aware of this load.
Wouldn’t it be better to know how the
load is spread across individual services?

We will again use funghi.kuehnast.com
as our test server. The server runs Web,
mail and POP3 services. Let’s assume
that Cacti indicates an abnormally high
load on the network interface, the first
question you would ask is, “Which one

of these services is to blame?”. Normally,
you would need to dig down into the sys-
tem and find the culprit by analyzing
various logfiles. But it would make more
sense to have a tool that displayed the
network load per port. Again, we could
use Cacti for this job, but there is another
tool that provides more flexibility.

Multitalented IPTraf Tool
The talented all-rounder, IPTraf [7], is
the tool I opted for, as it provides
detailed information on network inter-
faces, including both the current
network load per interface, packet sizes,
and a traffic overview; also, IPTraf sorts
these statistics by port. We use IPTraf
version 2.7.0 in our scenario.

Most admins tend to use IPTraf inter-
actively for an overview of the current
network traffic on a server. Fortunately,

IPTraf can also run as a background dae-
mon. Here, IPTraf logs its results (usually
to /var/log/iptraf) for later parsing. Let’s
put IPTraf in the cron file first:

*/5 * * * * /usr/sbin/iptraf U

-s eth0 -t 5 -B -L U

/var/log/iptraf

The -s parameter tells IPTraf to collect
traffic information and sort it by port. -t 5
is the runtime in minutes, following
which IPTraf should terminate and write
its results to the logfile. -B suppresses
interactive mode and launches IPTraf as
a daemon. IPTraf creates logfile entries
similar to the following:

TCP/25: 169107 packets, U

90804448 bytes total; U

96958 packets, U

59www.linux-magazine.com February 2004

SYSADMINNetwork Monitoring

01 #! /bin/bash
02
03 # A script to see if the

server responds
04 # and on an error, will raise

the alarm
05 # via Mail/SMS/Cityruf

Cityruf is similar to 2sms.com
06
07

WDIR=/usr/local/shellscripts/l
m-livecheck

08
09 for i in `ls $WDIR/etc/`; do
10
11 ## extract IP and fqdn from

file name
12 IP=`echo $i|cut -f1 -d"_"`;
13 NAME=`echo $i|cut -f2 -

d"_"`;
14
15 ## ping host to see if it's

up
16 PING=$(/bin/ping -c2 -q -w2

$IP|grep transmitted|cut -f3 -
d","|cut -f1 -d","|cut -f 1 -
d"%")

17 if [$PING -eq " 0"]; then
18 ## Host is up
19 echo "Server $IP ($NAME):

ping OK";
20
21 ## check if host was down

and has now returned
22 if [-e $WDIR/deadhost/$IP

]; then
23 echo "Server $IP ($NAME)

came back to life";
24 rm $WDIR/deadhost/$IP;
25 fi
26
27 ## now checking the ports
28 for j in `cat

$WDIR/etc/$i`; do
29
30 RET=`/usr/bin/nmap -r --

host_timeout 2500 --
initial_rtt_timeout 2000 -p $j
$IP|grep $j/tcp|cut -f1 -
d"/"`;

31
32 if [-z $RET]; then
33 echo "$IP: Port $j is

down";
34
35 ## check if Port was

down before
36 if [-e

$WDIR/deadports/$IP_$j]; then
37 echo "Port $j on

server $IP ($NAME) is still
dead";

38 else
39 echo "Port $j on

server $IP ($NAME) has just
died";

40 touch
$WDIR/deadports/$IP_$j;

41 ## place commands
for sending alarm here ##

42 fi
43 else
44 echo "$IP: Port $j is

up";

45 ## check if port was
down and has now been
resurrected ##

46 if [-e
$WDIR/deadports/$IP_$j]; then

47 echo "Port $j on
server $IP ($NAME) came back
to life";

48 rm
$WDIR/deadports/$IP_$j;

49 fi
50 fi
51 done
52
53 else
54 echo "Server $IP ($NAME):

no response";
55
56 ## check if Server has

been dead before
57 if [-e $WDIR/deadhost/$IP

]; then
58 echo "Server $IP ($NAME)

is still dead.";
59 else
60 echo "Server $IP ($NAME)

has just died.";
61 touch

$WDIR/deadhost/$IP;
62 ## place commands for

sending alarm here ##
63 fi
64
65 fi
66 done

Listing 2: alarm_livecheck.sh

directory, /usr/local/shellscripts/iptraf.
The database for our sample server will
be stored here; the command to create
the database is quite long:

01 rrdtool create /usr/local/
shellscripts/iptraf/rrdtool/
mailserver.rrd \
02 DS:smtp:ABSOLUTE:600:U:U \
03 DS:pop3:ABSOLUTE:600:U:U \
04 RRA:AVERAGE:0.5:1:600 \
05 RRA:AVERAGE:0.5:6:700 \
06 RRA:AVERAGE:0.5:24:775 \
07 RRA:AVERAGE:0.5:288:797 \
08 RRA:MAX:0.5:1:600 \
09 RRA:MAX:0.5:6:700 \
10 RRA:MAX:0.5:24:775 \
11 RRA:MAX:0.5:288:797

A note for people with prior knowledge
of RRDTool; in contrast to the SNMP net-
work traffic data, the data source here is
not qualified by COUNTER, but by
ABSOLUTE. This reflects the fact that
IPTraf sets the counter to zero every five
minutes.

You can then follow this pattern to add
RRDs for your other servers, remember-
ing to replace the mailserver.rrd filename
and the DS entries. Although you only
need this longish command once per
server, it is practical to script the com-
mand, the advantage being that you can
immediately start monitoring any new
servers you deploy.

A short script called plot_mailserver.sh
(see Listing 3) takes care of archiving
and plotting graphs; Figure 2 shows the
results. Similar scripts are easily written
for any other services you need to moni-
tor, such as HTTP, FTP, or NNTP. These
scripts and the tools described above
provide admins with a solid database
that facilitate the troubleshooting of net-
work bottlenecks. In my case, I didn’t
have to wait long for a real-life opportu-
nity to put the toolset through its paces.

Sudden Death
The scenario: A mail server kept on
dying sporadically. The chain of events
was always the same: first alarm_
livecheck.sh alerted me to the fact that
the SMTP port was no longer respond-
ing, almost immediately followed by
the POP3 port; some time later, the
server responded only intermittently
when pinged, before failing to respond
altogether. The network load graph gen-
erated by Cacti showed increased
activity on the interface about 30 min-
utes before the server bit the dust, but
nothing that Postfix should not have
been able to handle.

The Loadavg graph was more impres-
sive: it showed the load ramping to 40
and then dropping to zero. These symp-
toms are typical of machines that have
run out of memory and are swapping
into a black hole. In fact, the ancient
mail server had a mere 64 Mbytes of
RAM and 128 Mbytes of swap space. On
the other hand, Postfix is not known as a
resource hog. This led me to suspect
another program, Spamassassin [8],
which I had installed just previously.

To test this hypothesis, I launched top
and transferred about a hundred mes-
sages to the mail server from another
machine. QED. A few moments later,
Spamassassin had pushed the mail
server above the swap limit. But what
should I do about it? I had two
approaches in mind:

86978452 bytes incoming; U

72149 packets, U

3825996 bytes outgoing
TCP/110: 20174 packets, U

7575496 bytes total; U

8251 packets, U

360974 bytes incoming; U

11923 packets, U

7214522 bytes outgoing

The bytes total values are particularly
interesting, and should be saved for later
analysis. It also makes sense to place
them in a RRD (Round Robin Database),
to provide content for histograms. To
support this, create a subdirectory called
data; a file per service and day will be
written to this directory. The service
name and date are indicated in the file-
name. For example, smtp-history.
20031115 contains the SMPT traffic data
recorded by IPTraf on November 15 2003.

Stats Database for Cacti
And now to RRD: first create a subdirec-
tory called rrdtool in your working

60 February 2004 www.linux-magazine.com

Network MonitoringSYSADMIN

01 #! /bin/bash
02
03 sleep 5 # give IPTraf time to

write its data into the log
file

04
05 TRAFLOG=/var/log/iptraf
06

WDIR=/usr/local/shellscripts/i
ptraf

07 TODAY=$(/bin/date +%s)
08 UDATE=$(/bin/date +%Y%m%d)
09
10 SMTP=$(grep "TCP/25"

$TRAFLOG|tail -n1|cut -f2 -
d","|cut -f2 -d" ")

11 POP=$(grep "TCP/110"
$TRAFLOG|tail -n1|cut -f2 -
d","|cut -f2 -d" ")

12
13 echo "smtp: $SMTP"
14 echo "pop3: $POP"
15
16 if [-z $SMTP]; then
17 SMTP="0";
18 fi
19
20 if [-z $POP]; then
21 POP="0";
22 fi
23
24 # archive results

25
26 echo $SMTP >> $WDIR/data/smtp-

history.$UDATE
27 echo $POP >> $WDIR/data/pop-

history.$UDATE
28
29 rrdtool update

$WDIR/rrdtool/mailserver.rrd
$TODAY:$SMTP:$POP3

30
31 # draw the graph
32
33 rrdtool graph

/usr/local/httpd/htdocs/protos
tats/mailserver.gif \

34 --start -86400 \
35 --vertical-label "bytes per

second" \
36 -w 600 -h 200 \
37

DEF:smtp=$WDIR/rrdtool/mailser
ver.rrd

:smtp:AVERAGE \
38

DEF:pop3=$WDIR/rrdtool/mailser
ver.rrd

:pop3:AVERAGE \
39 AREA:smtp#00ff00:"SMTP

traffic" \
40 LINE1:pop3#0000ff:"POP3

traffic"

Listing 3: plot_mailserver.sh

• Artificially slowing Postfix down, to
reduce the mail frequency. This would
allow the Spamassassin processes to
terminate gracefully and free up the
memory they used. It would be easy to
configure this in Postfix’s main.cf,
although admittedly quite ugly.

• Install more RAM.
Of course I opted for the latter approach.
The problem disappeared with the arri-
val of 512 Mbytes of RAM and 1 Gbyte of
swap space. This example just goes to
show that troubleshooting is a lot easier
if you monitor your memory resources.
So let’s do exactly that.

Monitoring Memory Use
Keeping to the tried-and-trusted do-it-
yourself approach, I decided to write a
short script to read the RAM and swap
usage from /proc/meminfo, write it to an
RRD, and plot a graph with these values.
The first step was to create the RRD:

01 rrdtool create /usr/local/
shellscripts/iptraf/rrdtool/
mailmemory.rrd \
02 DS:ram:GAUGE:600:U:U \
03 DS:swap:GAUGE:600:U:U \
04 RRA:AVERAGE:0.5:1:600 \
05 RRA:AVERAGE:0.5:6:700 \
06 RRA:AVERAGE:0.5:24:775 \
07 RRA:AVERAGE:0.5:288:797 \
08 RRA:MAX:0.5:1:600 \

09 RRA:MAX:0.5:6:700 \
10 RRA:MAX:0.5:24:775 \
11 RRA:MAX:0.5:288:797

To be tidy, the database will live next to
the network load graphs in the rrdtool
directory we used previously, although
IPTraf will not be supplying the raw
data. Note that the data source is defined
as a GAUGE in this case, as it does not
reset to zero after reading, in contrast to
the IPTraf data seen previously.

Having created the database, the mem-
info.sh script shown in Listing 4 can now
start collecting data and create a graph.

Looking at the Crystal Ball
Of course the archive function in the
IPTraf script serves a useful purpose. I
intend to use it at a later stage to gener-

ate mid-term network load forecasts.
Simply looking at the RRDTool graph
shows evidence of linear growth over a
period of time in the network load data.

This makes forecasting simple. The
first step is to generate a trend-line, a
hypothetical straight line that runs
through the graph to reflect the individ-
ual values on the y-axis as closely as
possible. The second step is to calculate
the gradient, and simply assume that
future measurements will lie in the vicin-
ity of the trend-line. This method is
useful for short-term forecasts, assuming
there is no noteworthy change to ambi-
ent conditions and – most importantly –
that your systems are not too close to
their physical and technical limits.

The network can also drop – in this
case, the trend-line will point downward.
However, with the notable exception of a
few Dotcoms in their final throes, there
is no real evidence of decreasing net-
work or bandwidth use. ■

61www.linux-magazine.com February 2004

SYSADMINNetwork Monitoring

[1] D. Ruzicka,“Network Management with
Nagios, Netsaint’s Sucessor”:
Linux Magazine, Issue 29, p. 62

[2] J. Fritsch and T. Aeby,“Always There: Intro-
ducing Network Monitoring with Big
Sister”: Linux Magazine, Issue 38, p. 55

[3] Nmap: http://www.insecure.org/nmap
[4] C. Kühnast,“The Sysadmin’s Daily Grind:

Yaps”: Linux Magazine, Issue 30, p. 55
[5] W. Boeddinghaus,“Network Manage-

ment with MRTG”:
Linux Magazine Issue 24, p. 56

[6] A. Schrepfer,“Graphical Monitor: Cacti
Web Front-end for RRDtool”:
Linux Magazine Issue 35, p. 55

[7] IPTraf: http://iptraf.seul.org
[8] Spamassassin:

http://eu3.spamassassin.org

INFO

01 #! /bin/bash
02
03 # A script to test the free

memory (RAM and swap)
04 # and let RRDTool plot the

values
05
06

WDIR=/usr/local/shellscripts/i
ptraf

07 TODAY=$(/bin/date +%s)
08
09 ## extract mem values from

/proc/meminfo
10
11 RAM=`grep MemFree

/proc/meminfo|tr -s
[:blank:]|cut -f2 -d" "`

12 SWAP=`grep SwapFree
/proc/meminfo|tr -s
[:blank:]|cut -f2 -d" "`

13
14 ## write data into the RRD

15
16 rrdtool update

$WDIR/rrdtool/mailmemory.rrd
$TODAY:$RAM:$SWAP

17
18 ## draw the graph
19
20 rrdtool graph

/usr/local/httpd/htdocs/protos
tats/mailmemory.gif \

21 --start -86400 \
22 --vertical-label "kBytes free"

\
23 -w 600 -h 200 \
24

DEF:ram=$WDIR/rrdtool/mailmemo
ry.rrd:ram:AVERAGE \

25
DEF:swap=$WDIR/rrdtool/mailmem
ory.rrd:swap:AVERAGE \

26 AREA:ram#00ff00:"RAM" \
27 LINE1:swap#0000ff:"Swap"

Listing 4: meminfo.sh

Figure 2: The graph created by the plot_mailserver.sh script shows the load on port 25 – and on port 110
actually, although there is no load on this port at present

