
The .ebaywatchrc file in the user’s
home directory tells the agent what key-
words to search the Ebay website with.
Any line without a hash sign represents
a search request. For example, the fol-
lowing lines

~/.ebaywatchrc
dwl 650
nikon

define a request for a D-Link “DWL-650”
network interface card, and any products
by Nikon. The script searches the title
fields of online auctions, and can even
support advanced searching features
using the abbreviations described in
[2]. Thus, for example, a line such as
photo -nikon will retrieve any photo arti-
cles except Nikon products, and “beatles
(dvd,cd)” will retrieve any Beatles CDs
and DVDs.

Ebay, the self-acclaimed World
Online Marketplace, has around
16 million items on auction in the

US on any given day. Needless to say, it
can be difficult to find a specific auction
considering the sheer bulk of items
listed.

The script we will be looking at this
month, ebaywatch (see Listing 1), regu-
larly transmits search requests to the
Ebay server and evaluates the auctions,
returned by the search, by their ending
date. When an auction is drawing to a
close, the script wraps a short descrip-
tion and the URL of the auction in an
instant message, and uses the Jabber
server to bundle this off to a gaim client
[5]. Gaim then pops the message up on
the requesting user’s display (see Figure
1), where a mouse click on the URL will
take the user right to the auction, in time
to bid.

If you are looking to snipe an Ebay

auction at the last minute, why not

use a Perl agent that performs a

keyword search of Ebay and notifies

you of the imminent end of auction

by instant message. Thus, allowing

you to place a bid at the end and

avoid being outbid on that precious

antique computer part you have

always hankered for.

BY MICHAEL SCHILLI

64 February 2004 www.linux-magazine.com

Monitoring Ebay Auctions with a Perl Agent and Jabber

E-Baywatcher

Perl: Ebay Auction MonitoringPROGRAMMING

CPAN Modules
As is often the case, someone has been
there before (true to the premise “I wrote
code so you don’t have to” – see [6]), so
there is a Perl module that performs
Ebay searches. Look for the WWW::
Search::Ebay distribution by Martin
Thurn, including the WWW::Search::
Ebay::ByEndDate module, at CPAN. This
provides all the functionality you need to
submit search requests, and sort the
results the search returns by ending date
– just what the doctor ordered!

Another module available from CPAN,
Net::Jabber by Ryan Eatmon, provides a
complete API that allows you to write a
functional Jabber client. ebaywatch only
uses a small part of its potential. When
needed, the client simply has to connect
to the Jabber server jabber.org on port
5222, introduce itself to the server, send
a message to the user, and then finally

say goodbye. If you need more function-
ality than this, try out the book by the
mighty Jabberer, DJ Adams (see [3]).

To simplify the procedure, both
the monitoring script and the receiver
use the same Jabber account. This is
possible because the Jabber server
allows you to log in simultaneously
from multiple IM clients using the same
username.

To allow the server to distinguish
between multiple logins with the same
username, it adds a so-called resource.
This is a string that uniquely identifies
each client in combination with the
username. The monitoring script uses
“ebaywatcher” as its resource name,
whereas Gaim defines a resource string
of its own.

A Question of Preferences
The configuration section of ebaywatch
defines the variable $EBAY_HOST in line
16 of the script. This tells the script
which of the many international Ebay
servers it should contact. The Listing
assumes http://search.ebay.com. If you
prefer to use the UK search server,
simply set $EBAY_HOST to http://search.
ebay.co.uk. $MINS_TO_END tells the
script how many minutes notice you
require before the end of the auction –
the default is 10.

ebaywatch uses the file $SEEN_DB_
FILE to store a persistent hash and thus
save status information between calls. In
line 28, the tie command uses the
DB_File module to bind the global hash,
%SEEN, to the configured file. The
O_RDWR option sets read and write
privileges, and O_CREAT tells tie() to
create the file if it does not already exist.
Line 32 ensures that the hash unbinds
from the file, if the program ends.

For programs that run in the back-
ground, like ebaywatch, a logfile is the
best place for status messages. And this
is where the functions DEBUG(), INFO(),
and LOGDIE() from Log::Log4perl put
them. Our Listing uses /tmp/ebaywatch.
log as its logfile.

The construction of the Ebay object in
line 34 is slightly unusual; it uses the
WWW::Search class’ new method, which
expects to be passed a ‘Ebay::ByEnd
Date’ string as a parameter. The while
loop in line 39 onwards, iterates through
the lines of the ~/.ebaywatchrc file,

eliminating comments and empty lines,
and placing the search key requested in
each line in $term.

Do Not Disturb!
The persistent hash, %SEEN, stores the
URLs of auctions where ebaywatch has
already alerted the user, in the “url/$url”

keys; it will not generate another instant
message for these auctions.

Some searches may return Ebay auc-
tions which are so far in the future that it
would not make sense to repeat the
search in the near future. After all, the
idea of the script is not to annoy the
powers that be at Ebay with a bunch of

65www.linux-magazine.com February 2004

PROGRAMMINGPerl: Ebay Auction Monitoring

As usual, you will need to install the
additional modules WWW::Search::Ebay,
Net::Jabber, and Log::Log4perl using the
CPAN Shell:

perl -MCPAN -eshell
cpan> install WWW::Search::Ebay
cpan> install Net::Jabber
cpan> install Log::Log4perl

The first two lines request additional mod-
ules from CPAN. If the CPAN Shell
prerequisites_policy option is set to follow,
these modules will be installed auto-
matically.

The level option in line 25 specifies the
logging detail level for Log4perl.The default,

$DEBUG, will create the most entries, $INFO
logs only the most important information,
and $ERROR logs only critical errors.To avoid
bloating the logfile, you might like to add a
RollingFileAppender to your Log::Log4perl
configuration; this allows logfiles to grow to
a pre-defined limit, to create a pre-definable
maximum number of files, and start
overwriting when this threshold has been
reached (see [4]).

Jabber Talk

The easiest way to create a Jabber account is
to use Gaim, a flexible IM client that can
speak all the major Instant Messenger
protocols.The program can be downloaded

from [5].You need to
install the Jabber plug-in
manually if you have an
older version of Gaim;
select jabberlib.so below
Tools | Plugins to load the
plug-in (see Figure 3).

Clicking on Add below
Tools | Accounts opens a
window with a form, as
shown in Figure 2. Gaim
remembers your pass-
word and automatically
logs on to the Jabber
server when launched.

ebaywatch Requirements

Figure 3: The Ebay agent uses the Jabber protocol for messaging.
Older versions of Gaim need to install a plug-in

Figure 1: A Perl agent reporting three Ebay auctions that
will end in a few minutes. The user told the agent to search
the Ebay server for specific keywords

Figure 2: The Gaim Instant Messenger
creating a user called “mikes-ebay-
watcher”.

WWW::Search::Ebay::ByEndDate ensu-
res that the next auction to close will
appear at the top of the result loop.
Thus, if line 77 discovers that the next
auction in the list ends after more than
10 minutes in the future, it will schedule
the next search ten minutes before the
end of the auction and ignore any auc-
tions later than this one, and use last to
exit the loop. Here, the script subtracts
10 minutes from the ending time of the
auction, converts this value to local Unix
time in seconds, and saves the result in
“notuntil/$term” in the permanent hash.

If the hit counter $hits still has a value
of 0 at the end of the loop, there are no
results for the current search key, and
the next search is postponed by one day.

To send a Jabber message, ebaywatch
collates the HTML code for a link with
any available auction data in line 86,

using a regex to eliminate any non-print-
able characters in line 90. The jabber_
send() function then accepts the message
string as a parameter and creates a new
Net::Jabber::Client object. After issuing a
Connect() to contact jabber.org, the client
sends its username and the Jabber
account password (see insert “ebaywatch
Requirements”). The script sets the
resource parameter to ebaywatcher as
described previously. Line 138 tells the
Jabber server that the script client is
alive; the callback function for other
clients is set to ignore in line 119 with:

$c->SetCallBacks(
presence => sub {}

);

A Jabber ID comprises of the username
and the Jabber server attached as

searches that will not return new results
anyway. ebaywatch stores this kind of
search key in the “notuntil/$term” key of
%SEEN adding the value for the local
Unix time of the next search request.

No special characters
Line 58 converts special characters to
URL compatible sequences, and line 60
organizes the whole URL of the search
request to reflect Ebay syntax. The while
loop in line 63 onwards, uses the
next_result() method to get the results.
The following methods return auction-
critical information:
• url(): URL of the auction
• title(): short description
• description(): auction number, num-

ber of bids, current bid
• change_date(): remaining time (2D

02H 29M)

66 February 2004 www.linux-magazine.com

Perl: Ebay Auction MonitoringPROGRAMMING

001 #!/usr/bin/perl
002 #############################
003 # ebaywatch
004 # Mike Schilli, 2003

(m@perlmeister.com)
005 #############################
006 use warnings;
007 use strict;
008
009 our $JABBER_ID =

"mikes-ebay-watcher";
010 our $JABBER_PASSWD =

"*******";
011 our $JABBER_SERVER =

"jabber.org";
012 our $JABBER_PORT = 5222;
013 our $SEEN_DB_FILE =

"/tmp/ebaywatch";
014 our $EBAY_HOST =

"http://search.ebay.com";
015 our $MINS_TO_END = 10;
016 our $RC_FILE =

"$ENV{HOME}/.ebaywatchrc";
017 our %SEEN;
018
019 use Net::Jabber qw(Client);
020 use DB_File;
021 use Log::Log4perl qw(:easy);
022 use WWW::Search::Ebay;
023
024 Log::Log4perl->easy_init(
025 { level => $DEBUG,
026 file =>

">>/tmp/ebaywatch.log" });
027

028 tie %SEEN, 'DB_File',
$SEEN_DB_FILE,

029 O_CREAT|O_RDWR, 0755 or
030 LOGDIE "tie:

$SEEN_DB_FILE ($!)";
031
032 END { untie %SEEN }
033
034 my $search = WWW::Search-

>new(
035

'Ebay::ByEndDate');
036 open FILE, "<$RC_FILE" or
037 LOGDIE "Cannot open

$RC_FILE";
038
039 while(<FILE>) {
040 # Discard comment and

empty lines
041 s/^\s*#.*//;
042 next if /^\s*$/;
043 chomp;
044
045 my $term = $_;
046 my $hits = 0;
047
048 if(exists

$SEEN{"notuntil/$term"} and
049 time() <

$SEEN{"notuntil/$term"}) {
050 DEBUG "Not checking

'$term' until ",
051 scalar localtime
052

$SEEN{"notuntil/$term"};

053 next;
054 }
055
056 DEBUG "Searching for

'$term'";
057
058 my $q =

WWW::Search::escape_query
($term);

059
060 $search->native_query($q,
061 { ebay_host =>

$EBAY_HOST });
062
063 while (my $r =

$search->next_result()) {
064 $hits++;
065 DEBUG "Result: ",

$r->url(),
066 " ", $r->title(),
067 " ",

$r->description(),
068 " ",

$r->change_date();
069
070 if($SEEN{"url/" .

$r->url()}) {
071 DEBUG "Already

notified";
072 next;
073 }
074
075 my $mins =

minutes($r->change_date());
076

Listing 1: Using Jabber to Monitor Ebay Auctions

@jabber.org. The send method then
sends the message, which is wrapped in
a Net::Jabber::Message object on to the
server. The server will accept the mes-
sage even if the user is not currently
online. The /GAIM suffix indicates that
SendTo() is not sending the message to
the Jabber client in the script, ebaywatch
(which is currently logged on as the
ebaywatcher resource), but to the run-
ning Gaim client, which is logged on as
the same user ID (this is the mikes-ebay-
watcher name in our example, see Figure
2), and automatically assumes the
resource name GAIM.

Timing
After making sure that the script runs
perfectly in the command line, (using
the command tail -f logfile will help you
check this), use the following crontab

entry to launch the script with a five
minute frequency:

*/5 * * * * /home/mschilli/binU
/ebaywatch

If you have the instant messenger run-
ning, you can look forward to a few
messages from your new “virtual friend”.
Then it’s up to you to click and bid! ■

67www.linux-magazine.com February 2004

PROGRAMMINGPerl: Ebay Auction Monitoring

[1] Listings for this article: ftp://www.
linux-magazin.de/pub/listings/magazin/
2004/01/Perl/

[2] David A. Karp,“eBay Hacks: 100 Industrial-
Strength Tips and Tools”: O’Reilly 2003,
ISBN 0-59600-564-4

[3] DJ Adams,“Programming Jabber”:
O’Reilly 2002, ISBN 0-59600-202-5

[4] Automatically restricting growth of and
rotating logfiles: http://log4perl.
sourceforge.net/releases/Log-Log4perl/
docs/html/Log/Log4perl/FAQ.
html#how_can_i_roll_over_my_logfiles_
automatically_at_midnight

[5] Gaim homepage: http://gaim.
sourceforge.net

[6] T-Shirt“I wrote code so you don’t have
to”: http://www.thinkgeek.com/interests/
oreilly/tshirts/6067

INFO

077 if($mins > $MINS_TO_END)
{

078 $SEEN{"notuntil/$term"}
=

079 time + ($mins -
$MINS_TO_END) * 60;

080 last;
081 }
082
083 INFO "Notify for ",

$r->description;
084 $SEEN{"url/" .

$r->url()}++;
085
086 my $msg = "<A HREF=" .

$r->url() .
087 ">" . $r->title() .

" " .
088 "(${mins}m) " .

$r->description;
089
090 $msg =~

s/[^[:print:]]//g;
091 jabber_send($msg);
092 }
093 # Pause for 1 day on no

results
094 $SEEN{"notuntil/$term"} =
095 time + 24*3600 unless

$hits;
096 }
097
098 #############################
099 sub minutes {
100 #############################

101 my($s) = @_;
102
103 my $min = 0;
104
105 $min += 60*24*$1 if $s =

~ /(\d+)[dD]/;
106 $min += 60*$1 if $s =~

/(\d+)[hH]/;
107 $min += $1 if $s =

~ /(\d+)[mM]/;
108
109 return $min;
110 }
111
112 #############################
113 sub jabber_send {
114 #############################
115 my($message) = @_;
116
117 my $c =

Net::Jabber::Client->new();
118
119 $c->SetCallBacks(presence

=> sub {});
120
121 my $status = $c->Connect(
122 hostname =>

$JABBER_SERVER,
123 port =>

$JABBER_PORT,
124);
125
126 LOGDIE "Can't connect:

$!"
127 unless defined

$status;
128
129 my @result =

$c->AuthSend(
130 username =>

$JABBER_ID,
131 password =>

$JABBER_PASSWD,
132 resource =>

'ebaywatcher',
133);
134
135 LOGDIE "Can't log in: $!"
136 unless $result[0] eq

"ok";
137
138 $c->PresenceSend();
139
140 my $m =

Net::Jabber::Message->new();
141 my $jid = "$JABBER_ID" .

'@' .
142

"$JABBER_SERVER/GAIM";
143 $m->SetBody($message);
144 $m->SetTo($jid);
145 DEBUG "Jabber to $jid:

$message";
146 my $rc = $c->Send($m, 1);
147
148 $c->Disconnect;
149 }

Listing 1: Using Jabber to Monitor Ebay Auctions

Michael Schilli works
as a Web engineer for
AOL/Netscape in
Mountain View, Cali-
fornia. He wrote “Perl
Power”for Addison-
Wesley and can be
contacted at
mschilli@perlmeister.com. His home-
page is at http://perlmeister.com.

TH
E

AU
TH

O
R

