
tioned in Box “VPN security require-
ments” are quite tricky to get right.
Figure 1 shows a generic template for a
secure VPN implementation, consisting
of a black-box handshake to the left and
the actual data transfer portion to the
right. The handshake can be anything
appropriate (TLS, SSH [11], even IPsec’s
IKE [12]), with the keying material
obtained from the initial handshake
phase being passed on to the VPN data
transfer phase.

Each packet is being given confiden-
tiality protection (inner wrapper, using
triple DES), message integrity protection
(middle wrapper, using HMAC-SHA1)
and traffic flow integrity protection
(outer wrapper, using IPsec’s sliding-
window algorithm).

Confidentiality
Let’s look at some common pitfalls that
people run into when creating VPN
implementations without following the
template. Some VPN protocols use RC4
as their encryption algorithm. Starting
with Windows 3.1 and going on through
to the late 1990s, Microsoft really liked
using RC4 everywhere, and managed to
get it wrong almost every time they used
it, which is why they eventually stopped

doing so. However, non-Microsoft apps
like ECLiPt http://freshmeat.net/projects/
ecliptsecuretunnel/ and mirrordir http://
mirrordir.sourceforge.net/ still use it.

RC4 is a simple stream cipher that gen-
erates a pseudorandom output (the key
stream) which is XOR’ed with the plain-
text data to encrypt it. At the other side,
you generate the same key stream and
XOR it with the encrypted ciphertext
data to recover the plaintext. It’s simple
to use, which is what made it so popular.

The problem with this is that XOR is
commutative. Using the key stream and
ciphertext, we can recover the plaintext.
However, using the plaintext and cipher-
text (for example some email we sent to
the VPN user, or an e-commerce transac-
tion that we sent to their web server and
observed the VPN traffic that it corre-
sponds to) we can recover the key
stream. We can then XOR the recovered
key stream with other VPN packets
where we don’t know the plaintext to
recover their contents.

Even if we can’t inject plaintext, by
XOR’ing two encrypted packets together
we can recover the XOR of the plaintexts
because the key stream cancels out. At
one point Microsoft attempted a sleight-
of-hand “fix” for one of their RC4 appli-

There are quite a number of open-
source (as well as proprietary)
VPN applications around, but how

secure are they really? In practice there’s
a lot more to creating a secure VPN than
simply bolting some Blowfish encryption
and RSA key exchange onto a network
socket. This article looks at common pit-
falls in creating VPN implementations,
and contains guidelines and recommen-
dations for people wanting to create their
own VPN software or add VPN function-
ality to an existing application.

Leaving aside the more obscure
requirements, even the basic three men-

The security of Virtual Private Net-

works (VPN) is often more virtual

than real. Beyond the big three (SSL,

SSH and IPsec) we find lots of appli-

cations with serious flaws. This article

explains the details and recommends

some solutions. PETER GUTMANN

How secure is your VPN software really?

Virtually Secure VPNs
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cations by switching from a 32-bit to a
128-bit RC4 key, which ignored the fact
that the key length was irrelevant
because all you needed to do was XOR
two packets together to recover their
contents.

Trivial attacks on RC4
One particularly trivial attack is possible
on a challange/response protocol using
RC4: By XORing the challenge and
encrypted (or decrypted) response, we
can recover the key stream (802.11 ven-
dors quietly abandoned this part of WEP
when someone pointed out what it was
they were doing). RC4 also has some
minor cryptographic weaknesses (some
of which have been known for many
years) that are a bit too complex to
describe here, but that make its use in
new designs questionable unless special
precautions are taken. Finally, RC4 lets
an attacker modify messages in arbitrary
ways, as described in the next section.

The alternative to a stream cipher is a
block cipher, of which the best-known is
DES and its stronger variant triple DES
(3DES). Other block ciphers are the more
recent AES, IDEA (from PGP 2), Blowfish

(from Bruce Schneier’s book “Applied
Cryptography”), and CAST (from PGP
5). There aren’t any major external dif-
ferences between them, triple DES is the
conservative choice (it’s the most heav-
ily-analysed, has been around forever,
and is supported by virtually every-

thing), while AES is its successor and is
much faster but also much newer, so it
hasn’t stood the same test of time that
3DES has. Although newer algorithms
like AES were designed with speed of
operation as a major design goal, it’s all
relative: Even an old 1GHz CPU can run
3DES at around 50Mb/s, and AES at
around 100Mb/s. The Free S/WAN folks
have further performance figures [1]

A block cipher, as the name implies,
encrypts an entire block of data, usually
64 but more recently 128 bits at a time.
This makes it rather harder to use than
RC4, which does a byte at a time, since
you need to work around the fact that
most messages aren’t an exact multiple
of 64 or 128 bits long. When DES was
standardized, a variety of modes of oper-
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Figure 1: A secure VPN implementation consists of a handshake (e.g. TLS, SSH and IKE) which obtains the
keying material for encryption ( 3DES) and integrity protection (HMAC-SHA1) of the actual data transfer
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Figure 2: RC4 can be dangerous if used incorrectly. Here, the sender generates a key stream and XORs it
with the plaintext (top). Injecting plaintext and reading the ciphertext is enough to recover the key
stream (middle). By XOR'ing two encrypted packets together we can recover the XOR of the plaintexts 
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A VPN needs to meet a number of require-
ments that go above and beyond those of
the core Internet protocol suite.These secu-
rity requirements include:
Confidentiality: An attacker shouldn’t be
able to determine message contents. Provid-
ing this goes a long way beyond simply
encrypting the data - an attacker may be
able to cause harm simply from knowing the
size of the encrypted data, or observing bit
patterns in encrypted data, or being able to
recover a single bit of data (for example a
boolean flag).
Authenticity and access control: An attacker
shouldn’t be able to feed you data that
appears to be from a legitimate user. Again,

this can get tricky – the attacker could replay
an authentic message from a genuine user,
which you need to be able to detect.
Integrity protection: An attacker shouldn’t
be able to modify message contents. An
extended form of this is traffic flow integrity
protection, in which an attacker shouldn’t be
able to insert/replay (“Pay $10,000 to my
account”), delete (“Look out, someone’s
modifying our messages!”), or reorder (“rm
backup”,“mv valuable_data backup”) mes-
sages. Note that an attacker doesn’t have to
defeat any of the message confidentiality,
authenticity, or per-message integrity mea-
sures to perform many types of traffic flow
modification attacks.

Availability: A variety of other, lesser require-
ments such as DoS-protection (Denial of
Service) also exist.These are frequently out-
side the control of the security layer (e.g.
SYN-flooding is handled at a very low level in
the IP stack). Providing DoS protection in the
security code is also a good idea because
many security protocols perform quite
heavyweight crypto operations for which it’s
possible to overwhelm a server by firing a
large number of client connection messages
at it. It doesn’t cost the attacker anything to
generate these (they just contain random
garbage), but it requires an expensive public-
key crypto operation (e.g. RSA or DH) at the
server to find out that they’re just garbage.

VPN security requirements



1’th block (the initialization vector or IV)
to ensure that the first block is random-
ized as well. These modes are illustrated
in Figure 3. This means that even repeat-
edly encrypting the same data with the
same key (but different IV) produces a
different output each time, making the
trivial attacks on ECB mode described
above rather more difficult, although not
totally impossible – the birthday paradox
says that with a 64-bit block cipher after
encrypting 2^32 blocks you’re likely to

see a repeated block, which is why AES
went to a 128-bit block size.

Certificational Weaknesses
This type of weakness is known to cryp-
tographers as a certificational weakness.
It’s not terribly likely to be exploited in
practice, but if you have a choice of two
algorithms or modes and one exhibits
the problem and the other doesn’t, it’s
better to choose the one that’s immune.
At some point in the future someone

ation were defined for it, with various
properties such as hiding data patterns
and allowing byte-at-a-time operation.
Of these, the least secure is electronic
codebook (ECB) mode, which encrypts
independent 64-bit blocks and is warned
against in every book on encryption.
ECB mode is used by vtun, http://vtun.
sourceforge.net/.

Modes of operation
Since each block is independently
encrypted, a given piece of plaintext
always encrypts to the same ciphertext,
so that if you send in a data block ABCD
and observe that it encrypts to WXYZ
once it’s on the VPN, you know that in
the future any encrypted block WXYZ
that you see would decrypt to ABCD.
This allows you, by simple trial and
error, to determine portions of someone
else’s message contents without know-
ing the key (it’s like encrypting Unix
passwords without using a salt). Even
worse, since the blocks are independent,
you can perform neat cut-and-paste
attacks as described in the next section.
For a cryptographer, seeing encryption
software that uses ECB mode is a danger
sign somewhat akin to seeing Visual
Basic and HTML listed under “program-
ming skills” on someone’s resume.

There are other modes that don’t have
these problems, of which the most
widely-used is cipher block chaining
mode (CBC). CBC (and other modes like
CFB, ciphertext feedback) make block n
depend on block n-1, and use a random -

50 February 2004 www.linux-magazine.com

VPN InsecurityKNOW HOW

How many people do you need to have in a
room to ensure that the odds of two of
them sharing the same birthday are better
than 50%? The chances of someone having
the same birthday as you are a rather
unlikely 1/365 or 0.3%. However, the chances
of two arbitrary people sharing the same
birthday increases much more quickly than
0.3% per person, because each person pre-
sent removes their birth date from the pool
of available dates.

This means that the range of possible
choices drops from 1/365 to 1/364, then to
1/363, and so on. Once you get more than 23
people together, the chances of clashing
birthdays is over 50%.This paradox has
implications in the safe choice of block sizes
for block ciphers and MAC algorithms.

Birthday paradox

Figure 3: Block cipher encryption modes. Both CBC (middle) und CFB (bottom) make each block depend
in its predecessor. In contrast, ECB (top) encrypts every block independently
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may figure out how to exploit it. Quite a
number of real-world attacks on security
protocols from the last few years were
regarded as certificational weaknesses
up until about the time that the attack
details were published. This is why pro-
tocol designers prefer to over-engineer
security protocols to be resistant to
attacks that are no more than a glint in
some cryptographer’s eye: They don’t
want to have to re-deploy their entire
installed base a year or two later when
someone figures out how to make the
attack practical.

There are a few other potential prob-
lems with IVs as well. For one thing, you
have to actually use them for them to be
effective (TunnelVision http://open.nit.
ca/wiki/?page=TunnelVision and Zebe-
dee http://www.winton.org.uk/zebedee/
don’t). In addition the IV has to be ran-
dom, and unpredictable to an attacker
[2] [3]. SSL and SSH, used the last block
of packet n-1 as the IV for packet n,
which means that an attacker who
observes packet n-1 can tell in advance
what the IV for packet n will be. The
next version of SSL, TLS 1.1, will fix this
(the IPsec folks knew about this one
years ago, so IPsec doesn’t have the
same problem [4]). This is another certi-
ficational weakness – so far no-one’s
found a way of doing any really serious
damage with it, but that doesn’t neces-
sarily mean that it’s safe to ignore.

Message integrity
Some programmers assume that encrypt-
ing data provides integrity protection.
Nothing could be further from the truth.
It’s often quite simple to arbitrarily mod-
ify encrypted data without knowing the
encryption key. Consider for example
RC4 as described in the previous section
and as used in ECLiPt, mirrordir and any

number of Microsoft applications. In the
example in Figure 4, flipping a single bit
completely changes the meaning of the
message, so that a standard EDI funds
transfer that in its original form would
have moved $10 into my account is now
moving rather more across.

Bit flipping with other stream ciphers
like CFB is similarly simple (several
VPNs use RC4 or CFB mode without
integrity protection).

Cutting and pasting
A previous section mentioned problems
with ECB mode as used in vtun. Figure 5
shows how to break the security of a
VPN using (say) triple DES without
needing to know the decryption key.

Recall that each block is encrypted
independently. To start, I go to a banking
server and submit a transaction. Observ-
ing the VPN traffic, I see what this
encrypts to. Later in the day, I see
another message, so I cut and paste the
blocks containing my account number
into the message and now the money
goes into my account, without me hav-
ing to know the encryption key.

I’m not exactly sure at this point what
the size of my windfall is going to be
because the information is encrypted, so
I’ll have to wait until the payment

appears in my account to see how much
I’ve won. If it’s not enough, I can repeat
the process as often as required.

What about using CBC mode, in which
each block depends on the preceding
one? Some VPNs use CBC or other
modes like CFB in a attempt to avoid the
weaknesses in EBC. These modes are
better than ECB, but only a little. CBC
and CFB have a very useful (at least in
some circumstances) resynchronization
property in which messing with a block
will garble the following one, but after
that the cipher will recover. This means
that even if you use these modes, you
can still perform the cut-and-paste attack
described above. In addition, CFB lets
you undetectably modify the last block
just as with an RC4-style stream cipher.

Providing proper integrity
protection
The only way to provide any real
integrity protection is to do it explicitly.
With the exception of a few quite recent,
still somewhat untried, and unfortu-
nately mostly patent-encumbered en-
cryption modes, none of the standard
encryption modes can provide message
integrity protection.

A first attempt at providing integrity
protection would be to add a simple
checksum like a CRC to the message
(some VPNs don’t even do that, using no
protection at all). Of the ones that do,
CIPE, http://sites.inka.de/sites/bigred/
devel/cipe.html uses a CRC, as did SSHv1
before it. Unfortunately, this isn’t secure.
CRCs are reasonably good at detecting
inadvertent modifications, but com-
pletely useless for detecting deliberate
ones – you can create data that has any
CRC you want it to have, including the
one that the original message had if you
want to create a forged message. Further-
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Figure 4: Flipping a single bit of RC4-encrypted data can have a major impact: Instead of $10, the modi-
fied EDI transaction now transfers $100,010

QT-TRNSFER USD 000010,00 FRM ACCNT 12345-67 TO

sSJNsF7BQIPBCjTUo1yl06VohNJcsALNpqf05xe9X0nYLd

00101101

00101100

sSJNsF7BQIPBCjTTo1yl06VohNJcsALNpqf05xe9X0nYLd

QT-TRNSFER USD 100010,00 FRM ACCNT 12345-67 TO

Flip low bit

Plaintext

Ciphertext

Plaintext

Ciphertext

Figure 5: Block ciphers in ECB mode are vulnerable to simple cut-and-paste attacks. Copying the bank
account number from a regular transaction (top) into someone else’s transaction (bottom) is all that’s
needed to redirect the funds

789012-3Deposit $10,000 in acct.  number 12-3456-

7eMPZcE2H2nx/GHE KgvldSbq GQHbrUt5 tYf6K7ug S4CrMTvH

a8oaNWpjH2nx/GHE 5guZEHVr GQHbrUt5 tYf6K7ug Pts21LGb

7eMPZcE2H2nx/GHE 5guZEHVr GQHbrUt5 tYf6K7ug S4CrMTvH



much traffic flow integrity protection
because what was being tunnelled was
IP traffic, and IP expects unreliable links
and deals with them itself.

However, like the fact that a CRC is
good for detecting inadvertent changes
but hopeless for detecting deliberate
ones, there are all sorts of nasty things
you can do with deliberately-chosen
“failures” rather than random, network-
induced ones, because the protocols in
question were never designed to handle
deliberate, maliciously-applied “fail-
ures”. Steve Bellovin (one of the IPsec
designers) wrote a paper on this that
contains a whole catalogue of problems
[6]. This was subsequently fixed in
IPsec, but not in the other VPN apps
mentioned above.

False Assumptions
Related to this is a user perception prob-
lem: Users may expect that the use of a
VPN with all manner of security features
gives them stronger guarantees about the
quality of service that they’re getting
than the use of an unprotected channel.
This is not an unreasonable assumption
to make, the whole point of a VPN is to
provide additional guarantees that go
beyond the basic IP ones. Alternatively,
the user may be tunnelling something
other than IP data (vpe http://savannah.
nongnu.org/projects/vpe, for example,
tunnels Ethernet frames) which doesn’t
even try to provide any traffic flow pro-
tection.

In this case the VPN author is expect-
ing the user to provide the service, and
the user is expecting the VPN author to

provide the service. The solution to this
problem is fairly simple: Include se-
quence numbers inside the secured
envelope (Figure 6) and have the recipi-
ent arrange received packets by se-
quence number, re-ordering, discarding
duplicates, and complaining about miss-
ing packets as required. This is simple
enough for a TCP link (the packets have
to arrive in order, so any duplicate, miss-
ing, or reordered packets are an in-
dication of an attack), but requires quite
a bit of extra work with the inherently
unreliable UDP.

IPsec solves the problem with a slid-
ing-window algorithm [7] that provides
localized reliability at the IPsec level. An
alternative would be to provide a relia-
bility layer on top of UDP and then treat
it as if it were a TCP link, with standard
sequence-number-based protection as
described above. Both of these options
require a bit of thought (and careful cod-
ing) to get right.

Uncontrolled control channel
To compound the problem, several of the
non-IPsec VPNs send session control
data over the not-quite-secure tunnel
that they’ve established, made worse by
the fact that the control channel doesn’t
contain tunnelled IP data so even the
minimal protection provided by the IP-
level checking isn’t present.

VPN control data is a lot more sensi-
tive than payload data, since an attack
on a single control-channel message can
compromie every message sent over the
data channel. This is why SSL, SSH, and
IPsec all use a full protocol re-handshake

more, even encrypting the CRC won’t
help you. The details are a bit too com-
plex to explain here, but it’s covered in a
1998 Core SDI paper [5] (the use of 
CRC-32 was actually a certificational
weakness in Kerberos for over a decade
before it was actively exploited in
SSHv1). This weakness lead to the
SSHv1 insertion attacks and the more or
less complete abandonment of SSHv1.

Integrity protection using
MACs
In order to provide proper message
integrity, a special-purpose crypto-
graphic checksum called a message
authentication code (MAC) is required.
IPsec cargo-cult protocol design practice
seems to favour a MAC size of 96 bits.
IPsec truncated the MAC to 96 bits
because that makes the IPsec AH header
a nice size, with a payload length of
exactly 128 bits (4 32-bit words); every-
one else assumed that the number 96
had some magic significance and copied
it into their own designs.
SSL/TLS and SSHv2 use a full-size 160-
bit MAC. vpnd http://sunsite.dk/vpnd/
uses a MAC, but truncates it to a mere 16
bits. On a T1 link, the birthday paradox
says that you can expect to see your first
MAC collision after just over half a sec-
ond. As an optional alternative to the
MAC, vpnd invents its own 16-bit check-
sum, a peculiar homebrew affair:

while(length--)
sum=((sum<<1)|((sum>>15)&1))

^*data++;

with very poor properties (the checksum
cycles so that after 16 bytes of repeated
data the low 16 bits contain all ones;
after 16 more bytes the input cycles back
to all zeroes, and then repeats).

Traffic flow integrity
This is where things start getting a bit
more tricky. Even if you’ve managed to
get the encryption and per-message
integrity protection right, an attacker
may still be able to cause havoc by
inserting/replaying, deleting, or reorder-
ing your otherwise-protected data
packets. Almost none of the VPN apps
provide any protection against this. The
same mistake was made in very early
versions of IPsec, which didn’t have
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Figure 6: The ESP header (an IPsec protocol) illustrates some important security features. The sequence
number is used for replay protection and the padding obscures the real payload length
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to update cryptographic parameters
rather than just pushing a new key or
security parameter down the tunnel.
Since the response to messages with bad
checksums is frequently to drop the
packet, it’s possible to no-op out key-
change messages (forcing continued use
of a compromized key) by flipping a bit
or two. Without replay protection an
attacker can even replay messages con-
taining instructions to switch to old keys,
forcing the re-use of a compromized key.

Most of the VPN apps don’t obscure
the payload length with random
padding, allowing an attacker to quickly
identify key management packets and
apply the above attacks. Obscuring the
payload length is also useful to prevent
an attacker from trivially identifying
other fixed-length messages like TCP
ACKs, ARP requests, and DHCP discover
messages, or identifying encrypted 
ICMP messages/responses, decoding
their contents, and injecting their own
ICMP messages [8]. In order to obscure
information about sensitive packets con-
taining data like encrypted passwords,
implementations of protocols like SSH
often pad the packets out to a fixed
length to make determining the payload
length impossible, or send a flood of
cover traffic to mask the presence of
packets containing valuable information.

Disabling encryption
Another control-channel attack (which is
really a message-integrity attack rather
than a traffic-integrity attack) works
against VPN apps that transport en-
cryption keys in improperly-protected

packets. The most obvious attack is to
flip the bits so that you get an all-zero
(or otherwise known/predictable) key.
However, against some ciphers it’s possi-
ble to perform an even simpler attack
that merely requires the ability to flip a
single bit. It doesn’t matter what the
value is, as long as it’s different from
what was originally sent. For this to
work, the victim needs to be using DES
or 3DES. This cipher has the property
that the key bits are parity-checked,
which was a consideration in the early
1970s when DES was being designed.
According to the specification, you’re not
supposed to use a key if the parity bits
are wrong, indicating that the key was
corrupted in transit.

The attack works because many VPN
apps don’t bother checking return values
for crypto functions, assuming that they
always succeed. Examples of applica-
tions that do this are TunnelVision, vpe
and Zebedee. What you do here is flip a
bit in the encrypted key packet, and
when the VPN software tries to load the

key, the key load fails because the parity
is wrong. Since the software doesn’t
check that the load succeeded, it ploughs
ahead with an all-zero key. This isn’t just
a simple case of poor programming prac-
tice: Any properly-designed security
application should never even get to the
stage where it loads a tampered key,
because the tampering should be
detected well before that point (there are
a pile of side-channel and related-key
attacks that are made possible with this,
the DES-key attack just happens to be
the simplest one to implement).

Other problems
So far I’ve only talked about the basic
VPN data and control channel process-
ing, and not covered the initial
handshake and authentication process.
The reason for this is that it’s an
extremely complex subject (see “Further
reading”) that usually consumes multi-
ple chapters of a security book and
would consume a similar amount of
space here, first to describe all of the
potential avenues of attack and then to
apply them to the various VPN imple-
mentations. The task is made more
difficult by the fact that the majority of
them use homebrew handshake mecha-
nisms whose design has to be
reverse-engineered from the source code.

In addition, a number of the imple-
mentations exhibit not just protocol
design flaws but various implementation
errors such as generating encryption
keys from the process ID and time or via
rand(), or performing little or no check-
ing on input data for out-of-bounds
values and range errors (the same prob-
lem was found in Microsoft’s PPTP
implementation, various attempts to
exploit protocol flaws instead crashed
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Designing a secure VPN protocol is hard.
Really, really hard. I wouldn’t feel comfort-
able doing it, and I do this sort of thing for a
living. It took some of the world’s best cryp-
tographers and security engineers years to
design IPsec because (all joking about IKE’s
design-by-committee process aside) every
time they thought they had the design
sorted out, someone would come along with
a new attack on some part of the protocol. In
some cases entirely new security criteria and
analysis techniques had to be created in
order to evaluate the security of various
aspects of IPsec.

Many previously undreamed-of problems
were discovered in the process, and were

fixed in the final design. As a consequence of
work on protocols like IPsec, SSL, and SSH,
the standards for key exchange/agreement
and authentication protocols have evolved
considerably in the last few years. In particu-
lar, authenticated key agreement turns out
to be surprisingly hard to do right (it’s easy
enough to do, it’s just really hard to do right).
Even the basic security models used to eval-
uate the protocols are still the subject of
active research.

The reason why protocols like IPsec (without
the IKE portion), SSL, and SSH are the way
they are is because that’s about the most
minimal protocol you can create that’s still
secure.

Some pontificating

If you need secure off-the-shelf VPN soft-
ware, the most obvious solution to go with is
an IPsec implementation, typically Free
S/WAN [12] http://www.freeswan.org/.
Unfortunately, feedback from users indi-
cates that this is quite difficult to use, even
more so than IPsec applications in general. In
the future the moving of Kame-derived IPsec
functionality into newer Linux kernels
should help this situation a bit.

Of all the non-IPsecVPN applications that I
could find, only OpenVPN http://openvpn.sf.

net/ and Yavipin http://yavipin.sf.net/ didn’t
have immediately obvious security problems
(I’m not sure what that failure rate would
imply for closed-source VPN applications).
OpenVPN is built on SSL for the control chan-
nel (taking the place of IPsec’s IKE), and uses
a design closely modelled on IPsec’s ESP for
the data channel.Yavipin is an original
design, but comes from someone who
knows what they’re doing and appears to be
well-written. Both are pure user-space appli-
cations and have little of IPsec’s complexity.

Pre-built VPNs



(DoS) techniques. Once the victim
switches to “Attack me first!” mode, they
remove the DoS. Obviously the problem
was the use of secure mode, because as
soon as the victim switched to “Attack
me first!” mode, throughput improved.
The victim is happy, and so is the
attacker. This type of downgrade attack
is a standard mechanism used against
various types of Windows authentica-
tion, where you don’t attack any of the
newer mechanisms if you can help it
because it’s much easier to just convince
the victim to switch to one of the totally
insecure Windows 3.1-era modes (proto-
cols like SSL include built-in protection
against this type of problem).

An attack of this kind was reported on
the SWIFT network (Society for World-
wide Interbank Funds Transfer, moving
about $US6 trillion a day) in the mid-
1980s, where link encryptors worked
perfectly encrypting data sent over test
links but any attempt to send live link
data resulted in data corruption and lost
packets. After weeks of trying, the bank
gave up and sent its financial transac-
tions in the clear, whereupon no more
data corruption occurred.

A question of timing
Sometimes the problems that have to be
countered are extremely subtle. For
example, since security isn’t closed
under composition, two individually
secure subsystems can combine to pro-
duce an insecure overall system (this one

is a standard nightmare for protocol
designers, and an area where a lot of
recent research effort has gone). Con-
sider a VPN that uses well-designed and
correctly-implemented confidentiality
protection and appropriate integrity pro-
tection. By themselves, they’re secure.
However, when combined, they can
cause problems.

A standard approach to per-packet
protection is to take your message, MAC
it to provide integrity protection, and
then encrypt the whole lot to provide
confidentiality protection. To perform
the attack, an attacker modifies the mes-
sage in transit and observes what
happens when it gets to its destination. If
the message is rejected fairly quickly, the
problem was detected during decryption.
If the rejection takes a bit longer, the
problem was detected after decryption
by the MAC’ing. This allows the attacker
to differentiate between attacks on the
encryption and attacks on the MAC.

At the moment this is (mostly) just
another certificational weakness, but
that doesn’t mean that someone won’t
discover a means of turning it into a real
weakness ten minutes after this article
appears (if they do, remember that you
read about it here first). Worse yet,
someone might figure out how to exploit
it two years down the track when soft-
ware that’s vulnerable to it has been
widely deployed.

If this happens with a mainstream pro-
tocol like SSL or SSH, there’ll be a CERT

the server because the code didn’t do
much checking of input data [9]). It
would take a fairly lengthy and detailed
code audit to catalog all of these prob-
lems, and when a particular flaw is
found it’s not certain whether it’s a prob-
lem with the (undocumented) protocol
design, or not actually part of the design
but simply an implementation error.

Speed vs. security
Some VPNs offer multiple modes of
operation, usually with one optimized
for security and one optimized for
throughput at the expense of security
(this is entirely unnecessary, the small
extra overhead for proper message and
traffic flow integrity protection is mostly
lost in the general VPN overhead). I’ll
refer to the throughput-optimized mode
here as “Attack me first!” mode, because
no attacker worth their salt will even
look at the secure mode when “Attack
me first!” mode is also available.

Here’s how they do this: When the vic-
tim sets up a VPN in secure mode, the
attacker bogs down the link using any
one of 1,001 standard denial-of-service
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If you really need to roll your own VPN soft-
ware or want to add VPN- style functionality
to an existing application, create the control
channel using the expertise of the SSL and
SSH developers, and the data channel using
the expertise of the IPsec developers (this is
exactly what one VPN application, Open-
VPN, does). For the SSL/SSH portion there’s
OpenSSL http://www.openssl.org/ and
OpenSSH [11] http://www.openssh.org/ or
alternatives like cryptlib http://www.cs.
auckland.ac.nz/~pgut001/cryptlib/ (my own
modest contribution) providing SSL, SSH,
and a pile of other stuff.

For the IPsec portion, there’s the Kame
framework (in newer kernels) or something
like ipsec_tunnel http://ringstrom.mine.nu/
ipsec_tunnel/ to retrofit to older ones.
ipsec_tunnel is an extremely lightweight
(38K of source code) IPsec ESP implementa-
tion, although it appears to be missing
some functionality such as the sliding-win-
dow replay protection that would have to be
added to provide proper security.

There is an effort under way to define stan-
dards for non-IPsec VPNs, the discussion is
available online via Gmane http://news.
gmane.org/gmane.network.vpn.theory.

Rolling your own

This article has only scratched the surface of
what’s involved in designing a security pro-
tocol. A good general reference on crypto
and security issues, which (among other
things) covers a range of security mecha-
nisms, explains why many of them are
insecure, and provides recommended fixes,
is “Network Security: Private Communica-
tion in a Public World”by Charlie Kaufman,
Radia Perlman, and Mike Speciner.
Bruce Schneier and Neils Ferguson’s “Practi-
cal Cryptography”contains a step-by-step
design of an SSL/SSH-like protocol, going
through the multiple iterations of design
needed to address each potential weakness
and close off avenues of attack.“Lessons
Learned in Implementing and Deploying
Crypto Software”, linked off my home page
at http://www.cs.auckland.ac.nz/~pgut001/,
looks at some of the problems that crop up

when people use otherwise secure encryp-
tion building blocks in an insecure manner.
In terms of IPsec VPN information, pickings
are sparse:The RFCs contain almost no infor-
mation on why they do things the way they
do, and most IPsec books just reprint or para-
phrase the RFCs. If you can handle the
volume, there’s a wealth of VPN design
knowledge contained in the IPsec mailing
list archives, http://www.vpnc.org/ietf-ipsec/,
although you’re in for a lot of reading if you
want to cover all of it.
For background material, there’s way too
much to cover here (not helped by the fact
that the details keep changing over time),
but“The SIGMA Family of Key-Exchange Pro-
tocols”http://www.ee.technion.ac.il/~hugo/
sigma.html is probably the most readable
overview of the type of thing that IPsec’s key
management mechanism is doing.

Further reading



advisory published and all the SSL/SSH
vendors will rush out to fix things. The
analysis that lead to this came too late
for these particular protocols [10], how-
ever SSH isn’t vulnerable to this specific
problem and SSL implementors already
know about it and provide workarounds,
so it’s a fairly safe example to use here.

However, if the same weakness is pre-
sent in any other protocol, no-one will
ever find out about it because the other
protocols aren’t mainstream enough for
cryptographers to look at them. The fact
that so many VPN apps are vulnerable to
even the most trivial attacks shows just
how dangerous this lack of outside secu-
rity analysis can be.

Biological entities
When some new attack is discovered,
it’ll be tested against one of the big three
(SSL, SSH, and IPsec), generally with
some cross-pollination across the proto-
cols. Applications will be immunized
against the attack if they aren’t already,
and it’ll live out its life in the proceed-
ings of a crypto or security conference.

Like a biological organism, the big
three will adapt and evolve to resist new
attacks, although occasionally weaker
strains like SSHv1 and SSLv2 will die
out. 

There was also an SSLv1, but it was
broken in real time by members of the
audience as it was being presented,
which is why you’ve never heard of it

before (it shared many characteristics
with some of the protocols described
earlier). Lesser-known protocols, on the
other hand, could survive in isolation for
years until the day they’re exposed to the
outside world, whereupon the first
attack to come along could wipe them
out completely. 

This is not the sole reason why it’s a
good idea to go with a standard design.
The problems found in implementations
of undocumented homebrew designs
mentioned in the previous section can’t
occur with a standard design because
there’s no ambiguity over what’s a proto-
col issue and what’s an implementation
issue. If someone does get the implemen-
tation wrong, it won’t be too hard to
detect because their implementation
won’t interoperate with anyone else’s.

For example the code for one of the
VPN applications that I examined looked
like it would send the first session 
key over the data channel in the clear
because no session key had been estab-
lished yet, although after about 45
minutes I gave up trying to dig the exact
protocol details out of the mountain of
uncommented spaghetti code. Such a
flaw could never occur in one of the big
three because (apart from the fact that
they never directly exchange encryption
keys) any implementation that did send
a key in the clear would be quickly
detected by the fact that nothing else
would be able to talk to it.

In order to make the VPN selection/
design process a bit easier, the two side-
bars “Pre-built VPNs” and “Rolling your
own” provide some general guidelines
on choosing or implementing your own
VPN software. ■
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3DES Triple DES
ACK Acknowledge
AES Advanced Encryption Standard
AH Authentication Header
ARP Address Resolution Protocol
CBC Cipher Block Chaining
CERT Computer Emergency 

Response Team
CFB Ciphertext Feedback
CRC Cyclic Redundancy Check
DES Data Encryption Standard
DH Diffie-Hellman
DHCP Dynamic Host Configuration Protocol
DoS Denial of Service
ECB Electronic Codebook
EDI Electronic Data Interchange
ESP Encapsulating Security Payload
HMAC Hashed Message Authentication  

Code
ICMP Internet Control Message Protocol

IKE Internet Key Exchange
IP Internet Protocol
IPsec Internet Protocol Security
IV Initialisation Vector
MAC Message Authentication Code
PGP Pretty Good Privacy
PPTP Point-to-Point Tunneling Protocol
QoS Qualit of Service
RSA Rivest Shamir Adleman
SHA1 Secure Hash Algorithm 1
SIGMA Sign-and-MAC
SSH Secure Shell
SWIFT Society for Worldwide Interbank Funds 

Transfer
TCP Transmission Control Protocol
TLS Transport Layer Security
UDP User Datagram Protocol
VPN Virtual Private Network
WEP Wired Equivalent Protocol
XOR Exklusive Or
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