
lenge the kind
of quality assur-
ance that a process of
this kind can provide, not to mention the
security criteria.

“Of course Linux is secure!”, most
Linux fans will assure them. But what
justification is there for this statement?
Or, to put that a different way, how can
security be quantified? And: Does Linux
development really comprise a security
process? And: How can we ensure strong
security standards in future?

Is Security Quantifiable?
It is no secret that Microsoft continues to
face credibility issues with respect to
software security and Trustworthy Com-
puting. And every six months or so,
some bored script kiddie paralyzes half
the civilized world with a more or less
incompetently coded worm.

One should be wary of accepting the
figures on the financial damage suppos-
edly caused by a worm at face value, but
even if you delete the last zero from half-
a-billion US dollars (the estimated
damage caused by the ILoveYou virus),
that still adds up to a lot of money.

But poking fun at Microsoft is cheap.
Admittedly, MS did not take security as
seriously as it should have, but shouldn’t
we check to see what our own house is

made of, before we
start throwing stones?

Let’s not forget that there
have been Linux worms like

Ramen, which exploited an Apache
security hole. Anyone who has removed
a root kit from their computer will know
how insidious exploits aimed at Linux
bugs can be.

Many of these exploits are tailor-made
for script kiddies. Just download the tar
archive, extract the files, and run the
script to check whole blocks of IP
addresses for vulnerable services and
install backdoors on any victims it finds.

Attacks of this kind are accompanied
by increasingly sneaky techniques to
hide backdoors from admins: from modi-
fied system programs such as ps, top,
and ls to loadable kernel modules like
adore that hide complete processes and
files. From here, it is a small step to a
self-propagating worm.

Does this mean that Linux is just as
(in)secure as Windows? Which leads us
directly to the issue of whether security
is quantifiable, and if so, how?

The CERT Vulnerability
Database
The CERT Vulnerability Database makes
for interesting browsing. CERT stores
any incidents that comes to its attention
in a repository. These can be security
holes in operating systems, virus reports,
or router vulnerabilities.

Depending on the type and severity,
CERT may release vulnerability notes,
incident notes, or advisories on these

One of the oldest clichés about
Linux development is the notion
that the Kernel, and whatever

else might happen to be running on a
Linux box, is the product of a more or
less spontaneous development process.
Like a movie of an explosion running in
reverse. Thousands of individual compo-
nents picked up by the maelstrom,
thrown together, and suddenly gelling to
form a whole – with a satisfying thud
from the sound effects department
thrown in to boot.

Many outsiders may perceive the
development process of free software in
this way. Also, many Linux developers
would not contradict this cliché, as the
image of spontaneous, self-organization
reflects the kind of grassroots idealism
that keeps most of us going, despite the
trend toward commercialization.

But no matter what relation this image
actually bears to real life, I do not intend
to write yet another Open Source mani-
festo – there are enough of them around
as it is. Instead, let’s stick to the facts,
using software security as a measure.

Quality Assurance and Open
Source?
People who regard the genesis of Open
Source software as a kind of global
hacker happening, will of course chal-

Enemies of Open Source claim that it

is the root of all security holes. Advo-

cates of free software maintain that

the opposite is true. Who is right?

Neither camp, or possibly both? This

article on Open Source and security

provides the answers.

BY OLAF KIRCH

Open Source and Security – An Inside View

Open Source – Is it safe?

20 March 2004 www.linux-magazine.com

Open Source SecurityCOVER STORY

occurrences, where an advisory reflects
a more serious scenario.

The database (or at least the publicly
accessible part of it) also provides a
numerical rating for each vulnerability
as a general indication of its severity.
The rating reflects several aspects such
as how widespread the problem is, if it
threatens the infrastructure of the Inter-
net, and other parameters.

The vulnerability notes of the last few
years can be roughly categorized by
operating system and plotted as shown
in Figure 1.

But let’s not jump to premature con-
clusions just from looking at this graph.
The figures are not a direct measure of
the security of an operating system.
Instead, they simply tell you how many
security holes became public knowledge,
and indicate how serious CERT thinks
they are. The bars provide a (more or
less accurate) indication of how endan-
gered each type of system is.

The graph only indicates the vulnera-
bility of Linux-specific components
under the the “Linux” label. This means
the kernel or low-level services that sup-
port the kernel. Other applications, such
as Apache or OpenSSH, are grouped
below “Open Source”. The Unix category
contains only Unix-specific incidents,
such as the holes in various CDE
services. The “3rd Party” category com-
prises mainly Windows applications,
such as FTP servers and mail clients pro-
grammed by third parties rather than by
Microsoft.

The graph clearly indi-
cates a number of trends –
most notably, exponential
growth. It does not really
matter whether one is 50-
times more likely to be
hacked today, in compari-
son with 1996. But the
trend is clear, even if one
ignores the absolute val-
ues, and this explains why
security has become such
an important topic in
recent years.

The second thing that
becomes apparent is the
fact that vulnerabilities
are on the increase in
more or less every cate-
gory. Of course, some of

them show more pronounced growth –
the Microsoft bar has doubled its size
every year, for example – and some less
(Linux + Open Source). The Unix cate-
gory even dropped slightly following a
particularly “fat” year in 2001, when a
whole bunch of CDE issues was discov-
ered.

Does this allow us to conclude that
Linux is inherently more secure than
Windows? No. As previously mentioned,
the figures show that CERT considers
Microsoft systems to be more vulnerable
than Linux systems. Why this should be
so, is purely speculative. The security of
a system as a whole not only depends on
the quality of the software, but also on a
number of other aspects, such as the
level of security provided by the default
configuration of its components, or the
knowledge-level of the average user.

So what makes Linux secure?
If you take the trouble to read the techni-
cal details on Microsoft Security
Updates, you are sure to meet some old
acquaintances: kernel bugs, buffer over-
flows in Web server modules, in the SQL
server – but Linux has these too. And
this is hardly surprising. Despite all the
differences in the philosophy, there are
some major similarities. For example, a
monolithic kernel, a privilege model
based on user IDs, an administrative
superuser equipped with a full set of
privileges.

One could argue that major bugs occur
less frequently under Linux, or that they

are published less frequently. At least
this is what the CERT figures would
seem to indicate.

What makes this all the more remark-
able is the fact that the Open Source
development model makes it easier for
attackers to discover holes. On the one
hand you can search the source code for
vulnerabilities, using all kinds of tools
(from simple greps to a line-by-line
audit). And this is an option that many
people take – not only the “Black Hats”,
but also those with an interest in making
Linux more secure. Security consultants
and agencies, and of course, Linux dis-
tributors like Red Hat and Suse, perform
regular audits of components relevant to
the security of Linux.

On the other hand there is the devel-
opment process itself, which (with few
exceptions) is an open process that
makes it more or less impossible to
brush issues under the carpet. There is a
long history of developer groups who
have tried to solve security issues in
their projects clandestinely, and have
failed. Sudden, unannounced version
releases make malevolent hackers sit up
and listen. There are even people who
monitor the patches produced by some
projects and recognize a fix for a buffer
overflow, no matter how innocuous the
log entries or release notes may be.

In other words, Open Source software
is subject to the kind of quality assur-
ance that can be painful to the developer,
but in the end will produce a high stan-
dard of software quality. But that does

not mean there is no
room for improvement,
as the OpenBSD team is
only too pleased to
demonstrate.

Another question that
has to be looked at is the
extent to which a dis-
closed security hole can
be exploited on a typical
system. Many years ago
Linux distributors started
adopting the security
strategy of reducing the
number of services en-
abled by default to a
minimum. Now Micro-
soft is following suit, and
making a big fuss about
it, by launching its Trust-

21www.linux-magazine.com March 2004

COVER STORYOpen Source Security

Figure 1: The CERT Vulnerability Notes statistic provides an overview of vulnerable sys-
tems. Note the exponential growth overall

major part of the certification process.
For example, how a product is tested,
how security updates are handled, or
how to ensure that the traceroute version
that makes its way into the final release
not only works properly, but also does
not include a Trojan smuggled into the
developer CVS by some intruder.

Within this framework, certifications
can provide the kind of transparency that
can help a product shake off its college
dorm stigma.

Trusted Computing?
The “Trusted Computing Group” is sur-
rounded by techno-hype. Some maintain
that it is the greatest innovation since the
invention of the lock, others see it as the
final curtain for open software.

If you ask me, it is neither. The TPM
chip, and any technologies based on it,
such as Intel’s LaGrande, can enhance
the security of an operating system. This
said, it provides no protection against
buffer overflows, or any other kind of
bug. Also, you can completely ignore
TPM – you can compile a Linux kernel
and run it on a TPM/LaGrande mother-
board just like on any other.

The question is, should we ignore this
technology, or does it actually provide
something that can help make Linux
more secure? That is something worth
talking about, although the hardware
manufacturers are doing very little to
facilitate or encourage this kind of dis-
cussion at the present time.

On the downside, there is a danger of
TPM becoming an obstacle to interoper-
ability. For example, CIFS clients could
refuse to talk to a Domain Controller
without Microsoft certification. Scenar-
ios of this kind may be alarming, but
they are certainly not restricted to a sin-
gle technology, such as TPM.

New Approaches
If we look at this situation from a differ-
ent point of view, the discussion is as
follows: Linux may have similar archi-
tectural problems to Windows, but it has
a head start in dealing with them. That
is, Linux can justifiably claim to be the
secure alternative to Windows. The com-
munity cannot afford to rest on its
laurels, however. Microsoft has pulled
out to overtake, and it doesn’t make
sense to sit tight and let this happen.

In my humble opinion, we need to
think about new approaches. The cur-
rent approach of continually searching
for, and fixing, security holes, is ade-
quate, but it does not scale well to meet
steadily increasing security require-
ments.

Designs such as SELinux are promis-
ing, but simply adding more security
facilities to the kernel is not enough.
Applications need to leverage these facil-
ities, and that means a lot more work. It
is difficult to convince software develop-
ers that their applications, no matter
how sexy they may be, are a security
hazard, as they have to be installed
setuid root. Many authors simply retort
by saying, “Show me the buffer over-
flow, and I’ll admit I have a problem.”
But the opposite tack is also difficult,
“Write your application so as to demon-
strate that the section requiring
increased privileges is secure”.

Thinking about designs that can le-
verage TPM and LaGrande will not
change anything. The kind of segregation
that LaGrande envisages is more strict
than any current design as provided by
privilege separation and chroot jails.

The process is going to hurt, and the
results will not be satisfying all the time,
but stagnation would be a lot worse. ■

worthy Computing campaign. And it is
to be hoped that no-brain features such
as the amazingly naive handling of
attachments in Outlook are something
that we will never see on Linux.

Certified Security
That may sound fine, and may be
enough to convince some virus-harassed
users to switch to Linux. But for others it
is not enough – they demand more con-
crete evidence.

Rightly so. We have become accus-
tomed to independent authorities
checking the security and functionality
of our surroundings. After all, would you
use an automobile that the boy next door
had duct-taped together in your neigh-
bor’s garage on a public highway? Like,
“My friends all used it and nothing hap-
pened”, well big deal, but no thanks
anyway.

But come to think of it, is this not
exactly what IT manufacturers demand
of their users, although the bodywork
may be shiny and the seat covers have a
nice floral pattern? Linux development is
just a prominent example of exactly that.

There is no mandatory security check
for software, although there are some
efforts towards introducing one, such as
the US authorities insisting, in the last
two years, that manufacturers of operat-
ing systems meet the Common Criteria
requirements – a stance that European
states are currently thinking of adopting.
Similarly, many large enterprises insist
on certification for any operating system
that they intend to use.

This is why Linux distributors are
committed to CC evaluation. In February
last year Red Hat and Oracle released a
joint-announcement stating that they
were working on EAL2 certification. In
August last year Suse and IBM went
through EAL2+ evaluation, and EAL3+
is in the pipeline.

The whole thing sounds a lot like a
happening for paper tigers. And it will
not surprise many readers to hear that
certification is mainly a question of get-
ting the paperwork right. Having said
that, one should not simply dismiss
certification by equating the lack of new
code with an accompanying lack of new
security features. In fact, the opposite is
true. Documenting processes that influ-
ence a product’s security stance is a

22 March 2004 www.linux-magazine.com

Open Source SecurityCOVER STORY

[1] CERT Vulnerability Database:
http://www.kb.cert.org/vuls

[2] Common Criteria Certification:
http://www.commoncriteria.org/

[3] Red Hat/Oracle CC Certification:
http://www.redhat.com/solutions/
industries/government/commoncriteria/

[4] Suse CC Certification: http://www.suse.
com/us/company/press/press_releases/
archive03/security_certification.html

[5] “Trusted Computing:
https://www.trustedcomputinggroup.org

[6] Info on LaGrande:
http://www.extremetech.com/print_
article/0,3998,a=107418,00.asp

INFO

Olaf Kirch has been an
active Linux user and
supporter for over ten
years and currently
works for Suse, where
he is involved in IPv6,
NFS, and security.TH

E
AU

TH
O

R

