
not be able to get read/write access to
internal process memory. There are peo-
ple who claim that we could enter this
perfect world if we only stopped devel-
oping programs in C and instead used
Java, C-LISP, Ada, or whatever other lan-
guage they think is best. If life were only
that simple!

Even if this is true, and this still
remains to be seen (don’t forget that
Java JDK, Perl, Python, etc. all depend-
ing on interpreters, which are written in
C and often introduce their own security
problems), and we started to convert C
source code to the ultimate safe lan-
guage XYZ, it would still take many
years to finish this work. In the mean-
time, systems would still depend on
vulnerable C code.

We have to accept the fact that the
world is not perfect, and that even the
best programmers make mistakes. As a
consequence, the internal process mem-

ory can be exposed to corruption by
outside attacks, and therefore needs pro-
tection.

History
There are several reasons for the lack of
attention to process protection and the
general failure to understand its signifi-
cance. Traditional security research has
tended to focus on access-control and
encryption mechanisms. Process integ-
rity did not really start to become an
issue until buffer overflows were discov-
ered and became increasingly popular
over the years.

Linus Torvald’s dismissal of the Open-
Wall non-executable stack patch [1] was
an important event in the history of
Linux. The OpenWall patch imple-
mented a non-executable stack for the
Linux kernel. But the stack is only one of
several process memory areas that need
protection. Linus’s stance, that protect-

Much has been said and written
about securing systems by lim-
iting what processes can do to

other objects on the system, such as
files, devices, shared memory, etc. This
is designed to improve the integrity of
the system and the confidentiality of
data, and enhance overall availability of
services on the system. Ample evidence
for this concern can found in the number
of Linux kernel patches and programs
that exist today. One example is RSBAC
[3], which is used by Adamantix [6]to
achieve these aims.

Much less has been written about the
protection of the only active objects on
Linux, that is, the internal protection of
processes. Processes fulfill an essential
role on Linux, because they are the only
place on a Linux system where code can
be executed. Despite this importance,
the Linux world has a tradition of ignor-
ing process memory protection. This has
resulted in a large number of exploits
that depend on process memory corrup-
tion.

Why is memory protection
important?
In a perfect world, software would have
no bugs and therefore attackers would

The PaX kernel patch helps to bring 

a little peace of mind to safety-

onscious users. Adamantix developer

Peter Busser explains the basic prin-

ciples and justifies the inclusion of

PaX as an Adamantix component .

BY PETER BUSSER

Memory Protection with PaX and the Stack Smashing Protector

Breaking out Peace

36 March 2004 www.linux-magazine.com

PaX Memory ProtectionCOVER STORY

w
w

w
.photocase.de



ing only the stack does not provide much
security, was justifiable. Unfortunately,
this made many people believe that ALL
process protection mechanisms are use-
less. This is as wrong as believing that
the Earth is flat, but nevertheless it is
still a widespread, and extremely persis-
tent belief.

In the days when computers were still
personal computers, security simply did
not matter. As long as you did not con-
nect a computer to a network, and could
keep other people away from the
machine, it was pretty much safe. Many
of today’s programmers grew up in such
a world. With the growth of the Internet,
the situation has changed dramatically.
So far it has been easier to ignore the
problem and tell people that it is no big
deal. But the problem can no longer be
ignored.

PaX enters the arena
There have been several efforts to create
improved memory protection patches
since the OpenWall patch was dismissed
by Linus. The PaX homepage [2] has
links to some of them. Development on
most of these patches has been aban-
doned, basically leaving PaX as the only
one under active development. Thanks
to the persistence of the author of PaX,
Linux users can now enjoy the best
memory protection available in the free
software world.

Work on PaX started some 30 months
ago. After examining many exploits, the
PaX author came to the conclusion that
improving memory protection was the
only way to stop many of
them. But PaX did not see
widespread use, until the
gr-security patch started
to include PaX. Gr-secu-
rity is well known and
many people use it.

Several distributions,
like Gentoo hardened,
support gr-security and
therefore PaX. This was a
boost to development;
people started to request
features, reporting bugs,
and helping to port PaX to
other architectures. There
is now a small but active
community of people who
use and support PaX.

The difference between PaX and other
memory protection patches is that PaX
does not try to prevent specific exploits.
It tries to prevent certain classes of
exploits. Animals and plants are catago-
rized by reference to their similarities.
There are several classes of animals:
mammals, birds, fish, etc.

The same can be done with exploits
and attacks. Now suppose someone
invents a fence that protects your land
against wild boars. Really useful if you
have a crop that is frequently ruined by
these animals, but the same fence may
not be strong enough to keep out ele-
phants, or the holes may be too big to
keep out rodents. A fence which pro-
vides protection against ALL walking
animals, would clearly be a superior
fence.

In the free software world, PaX is like
that fence. It provides protection against
a whole class of exploits. Or, in other
words, it provides protection against ALL
walking animals. But not against birds or
insects. Other memory protection solu-
tions may only protect you against
certain animals. You could say that
OpenWall only protects you against
rodents. And OpenBSD’s W^X [4], and
exec-shield [5], protect you against all
walking animals, except elephants. But
more of that later.

Different classes of attack
Generally speaking, there are three
classes of attack that memory protection
patches try to address:
(1) Introduce and execute arbitrary code.

(2) Execute existing code out of original 
program order.

(3) Execute existing code in original pro-
gram order with arbitrary data.

Every possible memory corruption
exploit belongs to one of these three
classes. For example, many popular
buffer overflow exploits belong to (1).
The example quoted by Linus Torvalds,
used the so-called return-to-libc style
technique. It belongs to (2). Class (3)
exploits exist, but are rare. It is normally
easier to use class (1) or (2) instead.
Note that this is a classification of exploit
techniques, and not bugs. That is, a
given technique can be used to exploit
different bugs, and a given bug can be
exploited by more than one technique.

The idea behind PaX is to prevent
entire classes of exploit techniques from
working. At this moment, (1) has been
dealt with (i.e. this is the fence against
all walking animals), (2) is in the
pipeline, and (3) is somewhere in the
future (pending some research). What
sets PaX apart from other memory pro-
tection patches is the fact that they do
not deal with (1) completely, and often
ignore (2) and (3).

Class (1)
Introduction and execution of arbitrary
code means that it is possible to:
• Overwrite code that is loaded in mem-

ory,
• Overwrite data that is in memory, and

execute it as if it is code,
• Load new code from disk in memory

and execute it.
If it is possible to
overwrite code, an
attacker can inject
her own code into
the execution flow of
a process. Instead of
doing what the pro-
gram was designed
to do, the process
starts to do what the
attacker wants.

The same goes for
the second tech-
nique, where data is
overwritten and then
executed as if it were
code. Although you
might assume that a
system would handle

37www.linux-magazine.com March 2004

COVER STORYPaX Memory Protection

Figure 1: Many developers have started taking the Pax memory protection system more
seriously, now that it has been incorporated in GR-Security.



tricked into going down the wrong logi-
cal path and doing unexpected things.

Take the mount command, for exam-
ple. Mount can be configured to allow
certain users to mount disks. It performs
some checks to discriminate between
users who are allowed, or not allowed,
to mount.

If the attacker can somehow influence
these checks, then the mount command
will believe that the attacker is okay, and
it therefore mount a disk (which then
can then be used to launch the next
attack). This is a purely hypothetical
example. Good examples are hard to
find, because this class is harder to find
and exploit.

Combined protection
mechanisms
Protection against only one class is use-
ful but not very effective. Linus used a
Class (2) example to circumvent the
Class (1) protection of the OpenWall
patch. This is true for all classes; you can
avoid protection against attacks in one
class by using a technique from a differ-
ent class.

People often look at only one class of
attack, and forget the others (like the
OpenWall patch does). And what’s
worse, people dismiss the usefulness of
protection against one class, because
additional protection mechanisms are
needed to prevent attacks in the other

classes. This is the mistake Linus Tor-
valds made. Combining protection
mechanisms against all three classes of
attacks is the only correct answer here.

Stack Smashing Protector
The combination of defense mechanisms
against the different classes of attack is
one of the reasons that the Stack Smash-
ing Protector (SSP) was added to
Adamantix. SSP [7] (also known as
ProPolice) is a GCC patch which does
several things to prevent a limited num-
ber of Class (1), (2), and (3) attacks
known as stack overflows.

SSP uses two mechanisms to accom-
plish this:
• It adds a booby trap to the stack when

it detects a function that is potentially
dangerous (however, the detection
mechanism is not foolproof).

• It changes the order of local variables,
so that dangerous variables are placed
next to the booby trap, thereby
increasing the chance of detection.

The booby trap is often referred to as a
“canary”, after the canary birds that
were used by coal miners to detect lethal
CO gas. The gas would kill the bird
before it could kill the mine workers.
The canary in this case is a random num-
ber that is placed on the stack. A stack
overflow attack will overwrite the num-
ber, which is then detected by SSP before
the exploit code is executed. SSP writes a

message to the system log
and terminates the pro-
gram if it detects that the
random number has been
overwritten.

This kind of check is
quite expensive, espe-
cially when small funct-
ions are used. SSP tries to
detect functions that
could be vulnerable to
stack overflows and only
adds the checks to these
functions. The detection
mechanism is not perfect,
so it is likely that SSP will
fail to add checks to func-
tions that need them,
while adding them in
places where they they
are not needed.

SSP can also be used to
compile the kernel, adding

code and data in separate ways, pro-
grammers prefer the convenience of
treating code and data identically. Of
course, attackers find this just as conve-
nient. As a result, this technique is used
by most buffer overflow attacks. PaX
ensures that code is code and data is
data. So you can read and write data, but
not execute it, and execute code, but not
write to it.

The first two techniques only require
write and execute access to memory. PaX
can deal with these techniques on its
own. The third is different in that it also
requires file access. Electricity is often
used to make fences more effective. PaX
does something similar. By leveraging
ACLs and/or other access control mecha-
nisms, like for instance RSBAC [3], PaX
can guarantee perfect protection against
all class (1) attacks. It is the only mem-
ory protection patch that comes with a
guarantee of this kind.

Class (2)
Class (2) includes the example used by
Linus Torvalds to dismiss the OpenWall
patch. In general it means that the
attacker overwrites an address in mem-
ory that is used to control how the
process works. For instance, overwriting
the return address on the stack, so that
when a function returns, it does not
return to the place where it was called,
but to a place the attacker has chosen.

But there are several
other places, used for
various purposes, where
addresses are stored. And
in theory, all of these
places can be used by
attackers to influence a
process.

Class (3)
This class includes attacks
which overwrite impor-
tant data. In cartoons
there is often a scene
where the hero puts on a
disguise and sends the
bad guy off in the wrong
direction. Similar tricks
can sometimes be used 
to attack programs. If an
attacker can somehow
overwrite important data,
the program can be

38 March 2004 www.linux-magazine.com

PaX Memory ProtectionCOVER STORY

Figure 2: The output from Paxtest shows that the Pax-hardened kernel is immune to
most attacks.



stack overflow protection to the kernel.
And thanks to the optimizations per-
formed by SSP, performance is still good.

More elaborate compiler techniques
exist to make C programs more secure,
such as full bounds checking. Bounds
checking means that all access to data is
checked. This provides much more secu-
rity but also a lot of overhead. The speed
would be comparable to that of Java.
This is really a big performance hit that
few people are willing to take.

Randomisation
A feature found in PaX and other mem-
ory protection patches is Address Space
Layout Randomization, or ASLR. ASLR
means that different parts of a program
are loaded at different places in memory.
The memory layout changes each time a
program is executed.

This is not a protection mechanism. It
does not provide any kind of control
mechanism. However, it can make suc-
cesful exploitation more difficult if the
attacker can not work out the exact
memory layout. The various memory
protection patches differ in the amount
of randomization they provide. More
randomization is preferable, because it
makes brute force attacks harder. Cur-
rently, PaX provides the best randomiz-
ation of all the available memory protec-
tion patches for Linux and also better
randomisation than OpenBSD.

Compatibility
It is not necessary to recompile programs
to use them on a PaX kernel. Most pro-
grams will run fine without any
modifications. Problems are mostly
caused by libraries. From experience I
know that Debian Woody has some
issues with libraries; only a few libraries,
but important ones (such as zlib). Other
people reported that older Red Hat ver-
sions had many library-related problems
(I have had no reports about newer ver-
sions of Red Hat). I have briefly tested
Debian Sarge and, except for XFree86, it
worked fine on a PaX kernel.

Most programs work fine on PaX, even
with the most restrictive settings enabled
(like the ones used by the Adamantix
kernel packages). Of the several hundred
packages that have so far been adapted
for use on Adamantix, only a handful
cause problems with PaX. Most of these

cases were trivial to fix. The most fre-
quent changes required are compilation
flags, especially for libraries. Sometimes
this meant using C, instead of assembly
code (e.g. for zlib and gnupg). And
sometimes a few lines of the source code
had to be changed (because of how the C
compiler works).

Only a few programs cannot be fixed.
That is because they depend on creating
executable code in memory. The SUN
Java Runtime Environment (JRE) is a
good example of this.

You can use chpax to define excep-
tions for this kind of program. The chpax
settings are saved inside the executable.
When the executable is started, PaX will
detect these settings and disable some of
the checks. Most problematic programs
can be made to run this way without
having to change the code.

Paxtest
When PaX was added to the Adamantix
kernel and I started to recompile/relink
programs for PaX ASLR, it worked so
beautifully that I started to doubt if PaX
did anything useful. Before I started, I
had expected many programs to break,
and instead nothing serious seemed to
be happening. How was that possible?
One possibility was that PaX did not
work. Instead of speculating, I decided
to find some proof, and this is why I
started to write paxtest.

Paxtest is a collection of test programs
that each check one functional aspect of
PaX. One test writes machine code to a
character string and then tries to execute
that code. A properly working PaX con-
figuration will detect this and kill the
program. Other tests check other protec-
tion features.

There are also tests that measure ASLR
randomization. Together they provide
some information about the level of pro-
tection. The more tests that say “killed”,
the better. Using the output from paxtest,
I found out that PaX was getting along
just fine with the Adamantix kernel, and
that the lack of problems was a sign that
PaX was working much better than I had
expected.

Comparison between PaX
and other patches
The nice thing about paxtest is that it
can also be used to test the memory pro-

tection provided by other patches. Any-
one can download paxtest from the PaX
web site [2], and then compile and run
it, to compare results. (Or apt-get install
paxtest if you are using Adamantix).
Running paxtest on a kernel patched
with OpenWall shows only a non-exe-
cutable stack, which is to be expected. In
other words, it provides hardly any pro-
tection.

Running paxtest on exec-shield returns
different results, depending on the ver-
sion of paxtest you use. Bugs in older
versions of paxtest made people believe
that exec-shield performed better than it
actually does.

In general, the protection provided by
exec-shield is rather “underwhelming”.
And it will be interesting to watch how
fast the exploit writers will be able to
adapt to the weaknesses in exec-shield.
It would be nice if someone could port
paxtest to OpenBSD. I do not think that
OpenBSD’s W^X will return really con-
vincing results.

Conclusion
Process memory protection is important,
but so far there has not been a solution
that provides protection against all three
classes of attack. The oldest memory
protection kernel patch, which also pro-
vides the best protection at this time of
writing, is PaX. With the help of ACLs or
other access control mechanisms, it can
guarantee perfect protection against
Class (1) attacks.

Other mechanisms, such as SSP, 
are needed to defend against Class (2)
and (3) attacks. The cost of implement-
ing this is relatively low. Any Linux
distribution that cares about security
should plan to include this kind of pro-
tection. ■

39www.linux-magazine.com March 2004

COVER STORYPaX Memory Protection

[1] http://old.lwn.net/1998/0806/a/
linus-noexec.html

[2] http://pageexec.virtualave.net/

[3] http://www.rsbac.org/

[4] http://archives.neohapsis.com/archives/
openbsd/2003-04/1362.html

[5] http://people.redhat.com/mingo/
exec-shield/

[6] http://www.adamantix.org/

[7] http://www.research.ibm.com/trl/
projects/security/ssp/

INFO


