
Most of these issues do not affect FTP
[1]. It is important to understand that
FTP is not an extension or a revised ver-
sion of HTTP, but an independent
protocol, which is actually far older.

Installation
Many Web servers rely on an FTP dae-
mon being available. If you are spoilt for
choice of daemons, refer to the “Major

FTP Daemons” box for an overview of
the most widespread FTP servers for
Linux. This article will be focussing on
one of the most powerful, secure, and
easy-to-learn daemons, ProFTPD.

Some current distributions take the
headaches out of installing an FTP dae-
mon, providing the required packages. If
not, you can look forward to a few man-
ual steps, starting with downloading the

Numerous protocols are available
for distributing files across the
Internet, but not all of them are

useful in any given scenario. Popular
peer-to-peer services, such as Gnutella,
E-Donkey, and cohorts, were created to
handle file sharing scenarios, where
each participant needs to offer and
receive files. Free software distribution is
a different ball game. A small number of
suppliers (the developers) need to cater
for a large number of users. The proto-
cols typically used to handle this
situation are HTTP and FTP.

HTTP is the obvious choice for simple
tasks. Thanks to Apache, a suitable
server is easy to find, and almost any
computer will have an easy-to-use client
installed. Unfortunately, HTTP lacks a
few features that users require to down-
load large files across noisy lines.

The biggest complaint is the way
HTTP handles broken connections.
Although the HTTP 1.1 specification
does envisage a resume function for
interrupted transfers, most browsers can-
not handle this, and thus lose a lot of
useful bandwidth and time. Additionally,
running a Web server is expensive in
terms of resources, despite the availabil-
ity of modern software.

Transferring files is one of the major

goals of free software – traditional

FTP (File Transfer Protocol) tools do

this job very efficiently. Admins want-

ing to set up their own FTP servers

need a lot of background knowledge

to avoid the typical pitfalls.

BY MARC ANDRÉ SELIG

Insider Tips: ProFTPD

Know-How Transfer

60 April 2004 www.linux-magazine.com

Admin Workshop: ProFTPDSYSADMIN

Admins are spoilt for choice of FTP daemons.
The following list introduces four estab-
lished and well-known representatives of
this server class:

BSD-FTPd: The granddaddy of many Linux
FTP servers, BSD-FTPd also inspired many
other development projects.The daemon
provides more than adequate support for
systems with low traffic volumes, and is
included with many Linux distributions for
this reason. Don’t expect this daemon to
handle more complex tasks or heavier loads.

wu-ftpd: The Washington University FTP
daemon [2] is the implementation that most
closely resembles BSD-FTPd of any major FTP
daemons today. wu-ftpd  provides a wide
range of configuration options, and inte-
grates seamlessly with Unix systems.The
daemon has been affected by a series of vul-

nerabilities in the past few years, but by now,
these should be a thing of the past.

NcFTPd: This commercial server [3] is
available free of charge for home and educa-
tional use. Although the source code is
proprietary, the daemon is still quite popular,
as it installs automatically. Also, the server
can handle multiple simultaneous sessions
very quickly.

Pro FTPD: Just like NcFTPd, ProFTPD [4],
which we will be looking at later in this arti-
cle, can be run as a stand-alone server; this
makes it more responsive than its competi-
tors.When the server accepts an incoming
connection, it does not need to launch a new
process to handle the session. However, you
can use inetd to launch the FTP daemon, if
required. ProFTPD is Open Source, easy to
configure, and can be hardened.

Major FTP Daemons



sources, and their digital signatures from
[4]. Make sure that you check the signa-
tures: Listing 1 shows the steps. First,
run md5sum to verify the MD5 check-
sum. This ensures that the package is
has not been damaged in transit, and
avoids unexpected errors.

Testing the GPG signature is more
important, however. In contrast to the
MD5 checksum, this verifies the authen-
ticity of the program. 

You should note that the example does
not provide any indication that the
public key received from a key server
actually belongs to the programmer of
ProFTPd. Ideally, there would be a web
of trust verifying the key. For the
moment, you must accept this slight
uncertainty. 

You can then follow the normal steps
to compile the sources and install the
binaries on Linux. Listing 2 provides an

overview of the steps. The configure
options in line 3 are of interest in this
case.

Users and Directories
A few more steps are required to tie up
the installation. First check if you have

an account for the daemon. ProFTPD
typically uses three accounts, each of
which is assigned to a specific group.
Most of the code uses the nobody user
account, and the nogroup group. The
daemon requires root privileges for some
tasks, launching the server being one of

61www.linux-magazine.com April 2004

SYSADMINAdmin Workshop: ProFTPD

Browser users will not notice much differ-
ence between FTP and HTTP connections,
although the underlying techniques are
quite dissimilar.

FTP and User Names

Each FTP session starts off with a username
and password-based login. As the protocol
transmits these credentials in the clear, it
makes sense to use different credentials for
FTP than for your normal account. Having to
assign an account for each visitor who wants
to upload or download files, would cause a
lot of administrative overhead.This has led
to a convention honored by most FTP
servers: a guest account called anonymous
or ftp. FTP servers will typically accept any
email address as a password for this
account; the username@
string is interpreted as mean-
ing “username on this host”.

Ports

Every network service uses
one or multiple ports. For
example, HTTP uses TCP port
80.The server keeps port 80
open and listens for incom-
ing connections on that port.
Clients can use any port on
their local host to open up a
connection to port 80 on the
server. A lot of protocols use
simple assignments like
these.

This is not so straightforward
in the case of FTP. As Figure 1

shows, the protocol distinguishes between
the control connection (for commands) and
data connections, which actually transfer
files.The data connection is also responsible
for directory lists and the like.

The control connection reflects the tradi-
tional client/server model and uses TCP port
21.The client decides how the data connec-
tion will be handled. It can request active or
passive mode transfers. In active mode, the
client will open an arbitrary local port and
use the control channel to tell the server the
port number.The server then uses port 20 to
actively open a TCP connection to the port
specified by the client.The connection is
thus opened in the opposite direction to
what one might expect.

Command line based FTP clients typically
use active mode. Passive connections are the
domain of Web browsers. Mozilla, Opera, or
even Internet Explorer all ask the server to
specify a port for the data connection.The
server responds with the port number, and
the client then opens up a second connec-
tion from an arbitrary local port to the port
specified by the server.The control connec-
tion remains in place, no matter what status
the data connection might have.

Watch Out for Firewall Rules

You need to be aware of this unusual archi-
tecture when installing an FTP server. Many
distributions automatically set up IP filters
that will block additional ports. Only the
active mode data connection specified by
the server will be permitted by default, but
the data connection is useless if a control
connection cannot be established. FTP
admins might like to modify their firewall
configurations, and specify suitable filter
rules. Assuming a kernel 2.5, these will be as
follows:

iptables -A INPUT -p tcp U

--sport 1024: --dport 21 U

-j ACCEPT
iptables -A INPUT -m state U

--state ESTABLISHED,RELATED U

-j ACCEPT
iptables -A OUTPUT -m state U

--state ESTABLISHED,RELATED U

-j ACCEPT

The File Transfer Protocol

Figure 1: FTP uses a control connection and one, or multiple, data
connections. In active mode (top), the server opens the data chan-
nel; in passive mode (bottom), the client opens the data channel.

FTP-Server

FTP-ServerFTP-Client

FTP-Client

21
Port:Control connection

21
Port:Control connection

Data connection
20

Data connection

mas@ishi:/tmp> md5sum -c proftpd-1.2.9.tar.bz2.md5
proftpd-1.2.9.tar.bz2: OK
mas@ishi:/tmp> gpg proftpd-1.2.9.tar.bz2.asc
gpg: Signature made Fri Oct 31 09:39:42 2003 CET using DSA key ID
A511976A
gpg: Good signature from "TJ Saunders <tj@castaglia.org>"
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the
owner.
Primary key fingerprint: 697E 684D 1668 D696 8428 405C B78E 893F A511
976A
mas@ishi:/tmp>

Listing 1: Checking Signatures



server has a sample proftpd.conf that
supports both uploads and downloads
[6].

Launching
There are two possible alternatives to
launching your FTP server when booting
your machine. You can either use a cen-
tralized approach with inetd or xinetd, or
run the daemon as a stand-alone back-
ground process, allowing it to handle
incoming connections independently.
We have already looked at the first vari-
ant in a previous issue of Admin
Workshop [7]. So let’s look at the second
one this time. Despite the resource over-
head, this approach will mean a quicker
response for users, which may be a ben-
efit to your organization.

Linux systems typically use so-called
init scripts to launch services (and other
system components). These scripts eval-
uate the arguments passed to them: the
start parameter will launch a service,
and stop tells the service to quit. As the
name suggests, restart will restart the
service – this is often used to parse a
modified configuration.

An example of a suitable init script is
available from [6]. Copy the file to
/etc/init.d/proftpd, for example, and then
create a symbolic link to the directory
where the daemon resides. The com-
mands in Listing 4 below, will do this on
a typical Linux system. Depending on

your distribution, you may need to
replace /etc/init.d/rc3.d with /etc/rc3.d
in line 4.

Linux systems use a script to launch
the individual services in the correct
order. The order is defined by the file
names. An S at the beginning of a line
means “start the service” and is followed
by a number (defining the order). The
rest of the line specifies the name of the
service to be launched.

Finished!
Ensure that you are root, and launch the
server for the first time, by typing
/etc/init.d/proftpd start. After rebooting,
the script will automatically launch the
server.

Assuming that everything worked out,
you should be able to access your own
FTP server as ftp://localhost. Check the
functionality on the local host, but also
from other systems. This ensures that
your firewall rules are appropriate. You
can then go on to populate the home
directory, ~ftp/pub, with your public
content.

Of course, a number of additional
steps are recommended to harden critical
systems. Take a look at [4] for details. ■

them. Pro-FTP uses a guest account to
handle typical anonymous logins. Install
a user account for ftp with the ftp group
to take care of this.

The anonymous user needs a home
directory, and this is where to store files
for public access. Note that the daemon
should be able to read these files,
although it will not be the owner of the
files. ProFTPD can be configured to
enforce write-protection, but it makes a
lot of sense to observe security best prac-
tices in this case.

If needed, you can also create an
upload directory. Most servers use a
directory called /incoming, or
/pub/incoming. Assign access permis-
sions to allow FTP to write to this
directory, but not read from it. This pre-
vents malevolent hackers from misusing
the directory as a temporary repository
on the Web. After all, who knows what
kind of files might otherwise end up on
your server, or what legal repercussions
this might have?

The final directory tree for ~ftp
should resemble the structure shown in
Listing 3.

Configuring and Enabling the
Server
Your next step is to check the default
configuration file, /etc/proftpd/proftpd.
conf. ProFTPD 1.2.9 installs a sensible
minimal version, unless you have a con-
figuration file from a previous
installation. The file has a simi-
lar syntax to that used by
Apache, with the aim of being
as intuitive as possible. The
sample file assumes anony-
mous downloads only. If you
want to allow uploading, you
will need to add a few entries.
The Linux Magazine FTP

62 April 2004 www.linux-magazine.com

Admin Workshop: ProFTPDSYSADMIN

[1] RFC 959:
ftp://ftp.rfc-editor.org/in-notes/rfc959.txt

[2] wu-ftpd: http://www.wu-ftpd.org
[3] NcFTPd: http://www.ncftpd.com/ncftpd/
[4] ProFTPD: http://proftpd.linux.co.uk
[5] ProFTPD sources:

ftp://ftp.proftpd.org/distrib/source/
[6] Configuration file and init script:

http://www.linux-magazine.com/
Magazine/Downloads/2004/41/Admin/

[7] Marc André Selig:“Finger Pointing”, Linux
Magazine, Issue 36, December 2003, p56

INFO

# cp proftpd /etc/init.d/
# chown root:root /etc/init.d/proftpd
# chmod 744 /etc/init.d/proftpd
# cd /etc/init.d/rc3.d
# ln -s /etc/init.d/proftpd S85proftpd
# cd ../rc5.d
# ln -s /etc/init.d/proftpd S85proftpd

Listing 4: Start script

# chmod 733 ~ftp/incoming
# ls -la ~ftp
total 20
drwxr-xr-x 4 root root 4096 Jan 18 18:58 .
drwxr-xr-x 4 root root 4096 Jan 18 18:55 ..
drwx-wx-wx 2 root root 4096 Jan 18 18:55 incoming
drwxr-xr-x 2 root root 4096 Jan 18 18:55 pub
-rw-r--r-- 1 root root 90 Jan 18 18:58 welcome.msg
#

Listing 3: FTP Home Directory
$ bzip2 -cd proftpd-1.2.9.tar.bz2 | tar xf -
$ cd proftpd-1.2.9
$ ./configure --sysconfdir=/etc/proftpd --U
localstatedir=/var/run
[...]
$ make
[...]
$ su
Password:
# make install

Listing 2: Installing ProFTPD


