
• In what format is the email?
• Determining time on, time off, and

channel to record.
Output The TV signal is recorded
• Accessing the TV card.
• Send a confirmation email?
Within each category there are several
additional steps, each with its own prob-
lems to solve. Within the allotted space I
shall be unable to cover every variation,
or implement a complete professional
solution. However, I will be able to
demonstrate the steps involved in solv-
ing the problem, and the solutions
produced. This is not the only solution,
naturally. Just one of them, so consider
this as an explanatory method.

The basic requirements for this project
are a Linux-based computer with a TV
card and Internet connectivity.

The In Crowd
Our first task is to create a specific email
user to handle our requests. This is a

simple job for root:

adduser video

The video user will need to access the TV
card (/dev/video) and the audio mixer
(/dev/mixer) to be able to record from it,
so those devices must have the appropri-
ate permissions to permit this. Often,
these permissions will have already been
decided according to the requirements of
other users. In this case we should place
the video user into the appropriate
groups (perhaps video of the /dev/video
device, and audio for /dev/mixer).

usermod -G audio,video video

In order to test this, give the video user a
password, log on, and run your TV appli-
cation of choice. For example, xawtv.
When the system is ready for deploy-
ment, we should remove the password,
preventing anyone from being able to log

When it comes to a futuristic
vision of the future, hover
cars and robot vacuum clean-

ers usually come top of the list!
However, being able to email your video
recorder must come fairly close. Now,
thanks to Linux, it is not only possible,
but free! Using nothing but common
tools, some glue logic, and a little time,
we can create such a system in the com-
fort of our own operating system!

Start of the Breakdown
The basic requirements consist of three
areas. We’ll consider these as a simpli-
fied top-down design:
Input Email arrives (for video@mydo-
main.com)
• Who receives the email?
• Can this user control the video?
Processing Let the email trigger a
recording script at the appropriate time
• How can we validate the sender of the

email?

We all know that we can have a lot of

fun with Linux. We also know that

playing around with Multimedia can

be fun. The question is, can we really

put two diverse topics such as email

and TV recording together, and still

hope to produce a fun result?

Steven Goodwin thinks we can do

just that and sets off to prove it is

possible with some programming

knowledge.

BY STEVEN GOODWIN

How to Email Your Video

Video & Radio Control

66 April 2004 www.linux-magazine.com

Email your videoPROGRAMMING

w
w

w
.photocase.de

in as video, and exploiting any security
holes that might exist.

We also intend to email responses
back from the video. Perhaps saying that
the recording has started, or that the
request could not be fulfilled. To this
end, we should remember to include a
specific comment in the user field that
will appear on all emails. Otherwise,
they will appear to come from “,,,”!

usermod -c "My Video" video

Processing email automatically is easy,
thanks to a program called procmail
(installed by default on most systems).
Procmail is a mail filter that sits between
your mail transfer agent (Exim, Send-
mail, or Postfix, perhaps) and your
mailbox, to process each message before
it arrives. It can be programmed to move
mail into specific folders (like spam, for
instance), or forward on to other email
accounts.

As with many tools, Procmail works
by having one global configuration file
(/etc/procmailrc) and several local ones,
which live in each users’ home directory
and are called .procmailrc. These files
consist of a number of recipes. Each
recipe describes what to do with that
mail when a particular set of conditions
has been met. For example: move any
email from Dean into the Curry folder!
Procmail works through each recipe in
turn as it is listed in .procmailrc. When it
finds one that matches the criteria, it
processes the email accordingly and
exits, checking no further recipes.

For this project, we need to call an
external script whenever an email is

received by the video
user. If the subject of
this email is ‘help’, we
shall reply with the
instructions for using
our email-based video.
If the subject happens
to be ‘record’ we shall
respond by recording
the television program.
We shall therefore cre-
ate two recipes, using
the subject line to
distinguish between
them, and vary the
parameter passed to our
script. See Listing 1.

By default, procmail is case insensitive
so help is sufficient to match ‘help’,
‘HELP’ or ‘hElP’. The structure of the
.procmailrc file itself can be found in
man pages, or in one of the many tutori-
als available on Internet. Including the
one at [1].

Before calling our script, the entire
email is piped through an extra program
called formail. This converts the mes-
sage into mailbox format. Although
simple, this is an immensely useful tool
that understands the features of RFC 822
(which describes the format in which an
email should be) and outputs the email
with a unified layout. Therefore, we only
have to concern ourselves with the one
format, and not several. Formail takes
the email as standard input, and pro-

duces the mailbox (some would say, cor-
rect!) version to standard out. We must
therefore write our emailvideo.pl script
to deal with stdin.

Finally, we could extend .procmailrc
by including a final ‘catch-all’ recipe.
This is placed at the end of the file, since
procmail stops processing as soon as a
match is found, and this case will match
every email not yet caught. Any email
not fitting either of the two patterns
above could be sent to the bit-bucket. By
default, unmatched messages would
arrive in the user’s mailbox, something
that is redundant, knowing that video is
not a real user!

A user-friendly system would reply to
the sender with an error code. Without
adequate safeguards, however, this could
mean that video tries to reply to non-
existent (i.e. faked) email addresses, or
gets stuck in a loop by replying to itself
ad infinitum. This is why the ‘help and
‘record’ subjects must be specified
precisely, so as to reject a subject line of
‘re: help’ (as present in some spam
emails).

:0
*
/dev/null

Testing this code is fairly straightforward
since all our tools can be run on the
command line, using standard input and
output streams. Begin by sending a mes-
sage to the new video user with ‘help’ as
the subject. It should arrive in /var/
mail/video before too long.

If you pipe this file through formail you
can see the output that will arrive in your
Perl script. It will have all the email head-
ers intact, ready for parsing. Redirect this
output into a file and keep it in a safe
place. We’ll be using it later to test our
Perl script, without having to commit a
denial of service on our own mail server!

formail -s </var/mail/video U

>testmail

67www.linux-magazine.com April 2004

PROGRAMMINGEmail your video

01 PATH=$HOME/bin:/usr/bin:/usr/local/bin:
02 MAILDIR=$HOME/Mail
03 DEFAULT=$MAILDIR/inbox
04 LOGFILE=$MAILDIR/log
05 LOCKFILE=$MAILDIR/.lockmail
06
07 :0
08 * ^Subject: help
09 | formail -s emailvideo.pl help;
10 :0
11 * ^Subject: record
12 | formail -s emailvideo.pl record;

Listing 1: /home/video/.procmailrc

Security is always a concern. Every network
port, program, or service we open to the out-
side world is another potential security flaw
for people to attack. Some services might
appear harmless, but giving our machine
the capability of recording video may give a
hacker opportunity to utilise all our disk
space. Some prevention ideas might include,
• Record everything to a separate partition.

Even if it fills up, the system still has space
for log files

• Use PGP to validate the sender
• Reply to sender, asking for confirmation

before adding the request to the queue
• Don’t reply to any email that it doesn’t

have to. Spammers might use it as if it
were an open relay

• Use passwords that expire, limiting the
window of opportunity to days, or even
hours

Security

01 ch:2
02 at:18:00
03 length:25
04 pass:my_secret_password

Email

doing. Other people have their own
favorites! You can install it from the
command line with:

perl -MCPAN -e 'install U

Mail::Internet'

Remembering, of course, that you may
need to be root. If this is the first time
you’ve used the CPAN module to install
software, you will be asked a series of
questions to configure it. The defaults
are perfectly acceptable. Once installed,
Mail::Internet provides a wealth of
email-related functionality. We, however,
will only be using a small part of it. We
need to determine the sender from the
header, and read the email body to deter-
mine the recording parameters. First off,
we must create a mail object,

#!/usr/bin/perl
use Mail::Internet;
use strict;

my $mail = Mail::Internet->U
new([<STDIN>]);

This object is our gateway into the mes-
sage. Everything about the email can be
referenced through $mail, or a member
function of it. We can then use the mod-
ule code to provide the headers,

my $headers = $mail->head->U
header_hashref;
my $from = $headers->{From}[0];

Checking the from line gives us very lit-
tle in the way of security. These can, and
are, faked by spammers. We shall vali-
date the requests by use of a simple plain
text password included in the email. This
password will be transient, and once it
has been used, will not work again. It’s
not perfect, but it’s a start. Other security
ideas are presented in the BOXOUT:
Security.

Using the information in $headers, it is
possible to create a reply for this email
by building a new header with all the
appropriate information. However, since
this is a common feature, the Mail::-
Internet module includes a method for
doing this. Sensibly enough, it’s called
reply!

my $REPLY = $mail->reply();
$REPLY->body("A new body");
$REPLY->send();

We can make our first test here! Feed the
test mail we created earlier into the cur-
rent script, and an email should arrive in
your inbox.

./emailvideo.pl <testmail

Friends will be Friends
We now have a vacancy for a Perl script!
It must take an email from stdin, and
prepare our TV card for recording. Now,
although it might appear that the Perl
script should be responsible for record-
ing the TV program, this is not actually
the case. There will very likely be a time
lag between sending the email, and the
programme starting.

So instead, we will create another
script that does the actual recording, and
use Perl to parse the email and deter-
mine when that script should be run.
Perl can also validate the email, and
reply immediately with any problem or
ill-configured options. The second script
will be written in bash, to make an obvi-
ous distinction between the two ‘scripts’.

Parsing an email in Perl is best done
with an existing module. CPAN [2] pro-
vides so many modules, for so many
tasks, that it is impossible for many of us
to know which is better for any particu-
lar job.

I am using Mail::Internet [3] for
instance. Not because I have any mysti-
cal insider knowledge of it, but I’ve used
it before, and it does the job I need

68 April 2004 www.linux-magazine.com

Email your videoPROGRAMMING

The Linux Infra-red Remote Control project
[6] has provided the community with a dri-
ver and a good set of tools for IR
communication. It allows a Linux-oriented
PC to receive IR signals that can be used to
control applications (like Mozilla or mutt), or
transmit messages to other devices!

Most TV cards provide IR capabilities with a
small remote control and receiver ‘eye’.
These are well supported by LIRC, but usu-
ally work on a different IR protocol to the
universal remote controls, and TV handsets
available for traditional domestic use, and
so are not interchangeable.

However, LIRC has produced simple circuits
that can be built and attached directly to
the serial port to provide bi-directional con-
trol of standard IR devices.This means you
can send IR signals to a traditional VCR with
LIRC.

There is no feedback loop unfortunately (so
you can not tell if the video actually received
your signal), but it can provide identical
functionality if you don’t have a TV capture
card, or for when the hard drive runs out of
space. Since the above design is modular, we
only need replace a small amount of code in
the getvid.sh script.

LIRC

1 #!/bin/bash
2 # Parameters are, in order:
Station. Duration(mins). Reply
email

3
4 TVNAME[0]=SVideo; TVMAP[0]=0
5 TVNAME[1]=BBC1; TVMAP[1]=55
6 TVNAME[2]=BBC2; TVMAP[2]=62
7 TVNAME[3]=ITV1; TVMAP[3]=59
8 TVNAME[4]=Ch_4; TVMAP[4]=65
9 TVNAME[5]=Five; TVMAP[5]=37
10
11 TARGETDIR=/media/tv
12
13 DURATION=$2
14 CHANNEL=${TVMAP[$1]}
15 NAME="Vid_`/bin/date

+%Y%m%d_%H%M`_`echo
${TVNAME[$1]} | tr [.]
[_]`".avi

16

17 if [$CHANNEL -eq 0]; then
18 INPUT="input=1";
19 else
20 FREQ=$[($CHANNEL*8)+303]
21 FREQ=$FREQ.25
22
23 INPUT="input=0:freq=$FREQ";
24 fi
25
26 mencoder -o $TARGETDIR/$NAME -

tv
on:driver=v4l:$INPUT:width=320
:height=240

-oac copy -ovc lavc -endpos
$DURATION >/dev/null 2>/dev/null
27
28 REPLY=$REPLY"$NAME is awaiting

you when you get home :)"
29
30 echo "$REPLY" | mail -s "Video

complete !" $3

Listing 2: Recording script

The contents of the actual reply need to
be determined by the original email. This
might be a request for help (just because
it’s our system, doesn’t mean we’ll
always remember the format), or a com-
mand to record video. Our procmail
recipe already passes an extra argument
to the Perl script that can be used to
determine the purpose of our email. This
argument can be retrieved with,

my $ARGUMENT = shift;

if ($ARGUMENT=~/help/i)U
{ $reply = do_help(); }
elsif ($ARGUMENT=~/record/i)U
{ $reply = do_record($FREQ, U

$DURATION, $TIME); }
else { $reply = do_error(); }

The parameters for the do_record sub-
routine need to be determined from the
email body. Now, there is no easy way to
do this… unless you consider regular
expressions easy! Fortunately, the
expressions we need are not so difficult,
since we can design a layout that we’re
comfortable parsing. We shall adopt the
strategy that every parameter will consist
of,

NAME:VALUE

Where the name shall be case insensi-
tive, and the value is interpreted literally
as either a number, of a piece of text.
This text will be passed into our other
tools directly. An example of such an
email can be seen in the BOXOUT: Email.
Our parsing loop will read the first few
lines of the email (as to avoid lengthy
signatures that might confuse us), and
works like so:

01 for(my $i=0;$i<10;$i++)
02 {
03 my $line = $mail->body()->[$i];
04

05 if ($line=~/ch[^:\s]*[:\s]*U
(.+)/i) { $FREQ = $1; }

06 if ($line=~/length[^:\s]*U
[:\s]*([0-9]*)/i) { U

$DURATION = $1*60; }
07 if ($line=~/length[^:\s]*U

[:\s]*([0-9]*)\s*hours/i) U

{ $DURATION = $1*60*60; }
08 if ($line=~/pass[^:\s]*U

[:\s]*(.+)/i) { $PASSWORD = U

$1; }
09 if ($line=~/at[^:\s]*U

[:\s]*(.+)/i) { $TIME = $1; }
10 }

The password must then be checked and
validated before passing control onto the
do_record sub-routine that will set the
timer. In this example we are looking for,
and then deleting, a file with an identical
name located in a special .pass.d direc-
tory. Again, more complex solutions
would be required in a commercial envi-
ronment. However, this establishes our
proof of concept.

sub is_password_valid()
{
if (-f "$HOME/.pass.d/$_[0]")U
{ return 1; }
return 0;

}

In the code provided on the Linux Maga-
zine web site we have extended this
idea, allowing each command the option
of requiring a password, or not. This

allows help to be provided free of charge,
so to speak.

Sound and Vision
The most common tool for running
software at a specific time is at. This
simple utility runs in the background
and wakes up every minute to check for
outstanding tasks. Cron works in the
same way, but is targeted at jobs that are
repeated on a regular basis. at can only
run a single program (with optional
arguments) so we shall use a bash script
to achieve the more complex functio-
nality we need to record a TV
programme.

The parameters supplied in the email
fall into one of two categories: those that
determine when the recording should
begin, and how the recording should
behave.

The first category of parameters are
used in conjuncture with the at com-
mand to trigger a script, and consists of
the start time (check the at man page for
the format).

Our second category (the recording
behavior) will consist of the channel,
and duration, of the recording process.
These will be the parameters for our
script. We will also append the email
address for a completion message. If we
wanted to run the script immediately we
would type,

getvid.sh 2 25 U

steev@mydomain.com

69www.linux-magazine.com April 2004

PROGRAMMINGEmail your video

Station Input Channel * Frequency *
BBC 1 0 55 743.25
BBC 2 0 62 799.25
ITV 0 59 775.25
Channel 4 0 65 823.25
Five 0 37 599.25
Composite 1 1 - -
* Applicable to my area, possibly not yours!

Table 1: UK station list

1 #!/bin/bash
2
3 FREQ=$1
4 DURATION=$2
5 EMAIL=$3
6
7 FILEPATH="/media/radio/"
8
9 NAME="Radio_`/bin/date
+%Y%m%d_%H%M`_`echo $FREQ | tr
[.] [_]`"

10
11 FILENAME=$FILEPATH$NAME
12 echo "$NAME" | mail -s "Radio

recording started..." $EMAIL
13
14 BODY=""

15 BODY=$BODY`fm $FREQ $VOL`
16 BODY=$BODY`sound-recorder -S

$DURATION -f=wav $FILENAME.wav
2>&1`

17
18 # Encode and send
19 lame $FILENAME.wav

$FILENAME.mp3 >/dev/null 2>&1
20
21 uuencode $FILENAME.mp3

$FILENAME.mp3 | mail -s "Radio
program ($FILENAME)!" $EMAIL
>/dev/null 2>&1

22
23 # Clean up
24 /bin/rm $FILENAME.wav
25 /bin/rm $FILENAME.mp3

Listing 3: getradio.sh. An equivalent getvid.sh

:freq=799.25:width=320:height=2U
40 -oac copy -ovc lavc -endpos U

25 >/dev/null 2>/dev/null

You can probably spot the parameters
that our bash script needs to change: the
filename, the endpos (aka duration) and
the input/freq pair. Only the latter is
non-obvious. input indicates whether
the recording is to come from the tuner
(0), or the S-Video socket (1). Your TV
card may have other inputs.

The freq parameter requires an actual
frequency in MHz. Not a channel
number, or a station ID. Determining the
frequency is a two-stage process. Firstly,
we need to find the channel number
(which generally ranges between 21 and
68) for a particular station (BBC 1, BBC2,
etc). Secondly we need to convert that
into a frequency.

The channel numbers will vary
depending on where you live in the
country, and are based on the nearest
television transmitter to your location.
Anyone using a TV card will probably
have these channel numbers already
living in the .xawtv file. If not, they can
be produced by the scantv program.

UK readers can find these numbers on
the BBC’s web site at [5]. Five is not
shown here, but normally lives on
channel 37 or 39. There is no logic to the
channel numbers, you simply have to
find them, either through research, or
brute force.

Channels can then be converted into
frequencies with a straightforward
equation. This is the same across the
country. frequency = (channel * 8) +
303.25. This reflects the PAL-i vision
frequency of a particular channel, which
are spaced 8Mhz apart from each other.

Performing the arithmetic in bash
requires a little syntactical massaging, as
shown in line 20, although the addition
of the fractional component (0.25) is
done with concatenation. This builds
into the data set present in Table 1.

Otherwise, the bash script is fairly
uneventful. We use the time and date to
determine a filename, eliminating the
need for a ‘get_unique_filename’
function, and write our AVI into the
/media/tv directory (which will usually
be accessible to other users). There’s
also an option for recording from the
composite video input of the TV card.

This could be an external DVD player, or
even a security camera.

Short Stories
All that’s now needed is the testing and
deployment. And we should still have
our sample email ready for that purpose.
The completed script consists of a tree-
felling 143 lines, and so has be relegated
to the Linux Magazine web site, but all
the pertinent details can be found within
this article.

This is just one idea (and one so-
lution) for automated email systems.
Most mid-range TV cards include an FM
radio receiver too. Adapting our existing
system to record programs from the radio
requires very little work! Granted, we
need a new user (radio) to pick up the
emails, and we must replace the video-
related tools, but there’s no more than
an hours work! See Listing 3.

I use one package (fmtools) to control
the radio, and another (sound-recorder)
to record the WAV file. Then the lame
MP3 encoder is invoked to create an
MP3 of the radio show requested.
Because it is much smaller in size than a
movie, the MP3 can be uuencoded and
emailed back to the user that requested
it. This also requires that the audio mixer
is setup correctly beforehand.

As for other ideas, there are several
out there just waiting to be picked up.
How about grabbing teletext pages from
the TV card? Or adding files to your
peer2peer download queue? Or a song
request service? The tools are available
for free. The information is available
above. The fun is available whenever
you find it! ■

70 April 2004 www.linux-magazine.com

Email your videoPROGRAMMING

This would record a 25-minute program
on BBC 2, for instance. To begin record-
ing at some point in the future we would
issue a command like,

$ at 18:00
warning: commands will be U

executed using /bin/sh
at> /home/video/bin/getvid.sh U

2 25 steev@mydomain.com
at> <EOT> # this is produced byU
closing the input stream by U

pressing ctrl+d

Notice the full path used for the script.
Also note that the parameters we read
from the email are unchecked, and passed
through directly to this script. at takes the
commands from standard input which, by
default, is the keyboard. A simple pipe
will allow this to work non-interactively:

echo $cmd | at $when

Bad Young Brother
Having written this much code, we’re
now ready for the final stage. Recording
the actual program. For that, we have a
vacancy for a bash script!

This part, believe it or not, is actually
very easy. In this version, we are record-
ing information directly from the TV
capture card in the local machine. If you
wish to control a physical VCR this is
also possible, but you’ll need some other
software, as shown in the boxout: LIRC.

We can prepare the mixer (to record
audio from the line in socket) before-
hand, and test it with stand-alone
applications like xawtv to check that the
access rights have been correctly set for
the video user. This includes the target
directory for the resultant file.

The tool I have chosen to record the
TV signal is mencoder. This is part of the
MPlayer package from [4]. It provides a
large set of low-level options to tune the
channel, set the compression format,
and determine programme duration. A
full explanation can be found in the man
pages. The parameters given below
should be applicable to most systems.
Depending on the speed of your proces-
sor however, you may need to record at a
different resolution.

mencoder -o /media/tv/filename.U
avi -tv on:driver=v4l: input=0U

[1] Procmail tutorial:
http://www.perlcode.org/tutorials/
procmail/proctut/

[2] Comprehensive Perl Archive Network:
http://www.cpan.org

[3] Mail::Internet module:
http://search.cpan.org/~markov/
MailTools-1.60/Mail/Internet.pm

[4] MPlayer: http://www.mplayerhq.hu/

[5] BBC frequencies: http://www.bbc.co.uk/
reception/tv_transmitters/

[6] Linux Infra-red Remote Control:
http://www.lirc.org

INFO

