
You can reinstate the editor later by typ-
ing fg (foreground). The jobs command
tells you the status of the processes cur-
rently controlled by the shell:

[1]- Running emacs &
[2]+ Stopped vi myfile

[Ctrl]+[Z] sends signal 19, STOP. The fg
command continues the interrupted
processes by issuing signal 18, CONT
(continue). Signal 18 also issues the bg
command, which sends the process into
the background, just like adding & while
calling a process. If you temporarily stop
a background process (because it is
consuming too many resources, for
example), and want to continue the

process later, you can use kill
-19 to stop, and kill -18 to
continue the process.

The previous example
demonstrates a simplified no-
tation for process numbers,
which bash offers as a short-
cut. Normally, each Linux
process has a PID (process
ID) between 1 and 32767,
where 1 is reserved for init,
the granddaddy of all pro-
cesses. The first few hundred
PIDs are used by the kernel’s
own processes. The remain-
ing process IDs are used by
userspace programs.

It is tiring, repeatedly typ-
ing kill -18 21967 without any
typos. Bash provides two sim-
plifications. First, it knows
the PIDs of the current and
previous jobs. These are
tagged with plus and minus
respectively in the job list. If

Aprocess is called, completes its
job, cleans up, and terminates. If
the job is more complex, this can

take a while – weeks, or even months.
Take a Web server, for example, which
will typically reside in memory until the
next update is released. This applies to
most daemons. That does not mean to
say that the environment for this kind of
software will always be the same. After
modifying a configuration file, an admin
may need to draw a daemon’s attention
to the changes. This typically involves
inter-process communication.

Signals
Signals are one of the best-
known IPC (inter-process
communication) techniques.
Each time you enter the kill
command to terminate an
unneeded process, you are
actually sending a signal to
that process (see Figure 1).
Figure 2 shows a list of sig-
nals defined for kill. The list
in the
/usr/include/bits/signum.h
header file is authoritative for
programs.

If you attempt to kill a
process without supplying
any additional parameters,
your command will assume
signal 15 (TERM, terminate).
However, some processes
simply ignore this signal, or
may already have crashed. In

60 May 2004 www.linux-magazine.com

Admin Workshop: Process CommunicationSYSADMIN

Insider Tips: Signal-Based Inter-Process Communication

Hand-Signals
A typical Unix computer runs at least 30 simultaneous processes. Processes

often need to communicate. Signals provide the best-known method for

doing so. Users and admins can use the kill command to issue signals.

BY MARC ANDRÉ SELIG

this case, the TERM signal is no use. To
obtain the desired results, you will need
to type kill -9 instead, thus transmitting a
KILL signal. Unless you happen to have
chosen a zombie (see box - Zombies), or
a process that is waiting for an I/O oper-
ation, and thus residing in the kernel
space, the process is bound to be termi-
nated.

Stopping Programs
Some of the other signals are very impor-
tant – although this may not be so
obvious at first glance. Most readers will
have pressed [Ctrl]+[Z] to interrupt an
editor. The shell reacts by outputting:

[2]+ Stopped vi myfile

Figure 1: The user mas runs ps and grep to search for Opera processes and
then executes kill PID to tell those processes to terminate.

Figure 2: Linux recognizes 64 different signals which have both a name and a
number. The frequently-used kill -9 command can also be expressed as kill -
SIGKILL or kill -KILL.



you use a shell command like fg to
manipulate a process, but do not specify
a PID, the command is applied to the
current process. The second thing that
bash does is to provide process name
shortcuts, [1] and [2] in this case. You
can prefix a percent character to the
shortcut to access these processes. fg %1
in the previous example would send
Emacs to the foreground.

In addition to [Ctrl]+[Z] (suspend),
some shells also honor a delayed sus-
pend, [Ctrl]+[Y]. While suspend
immediately sends a STOP signal,
[Ctrl]+[Y] waits until the process reads
data from the terminal. This allows a
process to be manipulated immediately
after accepting input.

Hangups
Another signal dates back to the days of
serial terminals. Signal number 1 is
called HUP or hangup. If you use a
modem to access a Unix system and the
telephone line goes down, your shell will
be sent a HUP signal and can clean up.
For example, an editor would create a
backup and then terminate.

Modem lines are uncommon today,
but the HUP signal retains its usefulness.
Terminating a SSH connection is one
common use, and a common pitfall.

Imagine the scenario from Figure 3a.
User mas moves to a new machine to
perform some remote management tasks
and launches a time-consuming job. As
he does not want to wait for the results,

he appends an ampersand (&) to send
the process into the background, before
closing the session. Unfortunately, this
does not seem to work; ssh appears to
hang. The user sees no alternative but to
press ~., the SSH escape sequence, to
kill the connection.

What has actually happened is that
SSH has not crashed, but simply noticed
the background task. SSH was waiting
for this process to terminate before clos-
ing the connection. When the
connection is killed, a HUP signal is sent
to the background process, thus termi-
nating the process.

Figure 3b shows the right way to 
do this. The nohup command screens 
a background process from the hangup
signal. SSH notices this and will again
start to wait, but this time the con-
nection can be killed without affecting
the background process. dbdump keeps
on running, and will proudly present 
its results the next time mas logs 
on. This dbdump syntax is more 
elegant:

nohup sudo -u mysql dbdump U

</dev/null &

This means that the process is not con-
nected to the terminal and SSH will quit
after the user logs out, without having to
type ~. to break the connection.

Modified Configurations
The convention is to use HUP to tell the
daemon about modifications to its con-
figuration file.

The syslog daemon [2] is a typical
example. syslog is normally expected to
log warnings and error messages, saving
hard disk capacity and the administrator
from headaches. A little more is needed
after installing a new software package.
If the software does not run as expected,
the admin will need additional messages
and debugging information. By adding a

line to /etc/syslog.conf the admin can tell
syslog to collect this data:

*.* -/var/log/everything

You need to send a HUP signal to let sys-
logd know about the change. ps -ef | grep
syslog reveals the PID for the syslog dae-
mon, and kill -1 PID takes care of
terminating the daemon. If you do not
have time to locate the PID, some distri-
butions provide a killall which allows
you to send a signal to all processes with
the name you supply:

killall -1 syslogd

User-Defined Signals
Some other signals, such as, 10 (USR1),
and 12 (USR2), are available for user-
defined tasks. If you modify the Apache
configuration file, you can force the
Apache daemon to re-parse the file by
sending it a HUP signal. However, this
means dropping any current jobs. If you
send a USR1 signal instead, the Apache
parent process waits until the current
jobs have finished before stopping and
restarting its child processes.

Signals are a highly widespread, and
important part of an admin’s daily life.
There are a few restrictions. The number
of signals is limited. For safety reasons,
only the root user is allowed to send sig-
nals to processes that do not belong to
his user account.

This justifies alternative mechanisms.
We will be looking at the subject in a
future issue of Admin Workshop. ■

61www.linux-magazine.com May 2004

SYSADMINAdmin Workshop: Process Communication

[1] Wikipedia entry on zombie processes:
http://en.wikipedia.org/wiki/
Zombie_process

[2] Marc André Selig,“The System Logger”,
Linux Magazine, Issue 40, March 2004,
p64.

INFO

A process that spawns another is referred to
as a parent process, and the relationship
between the two as a parent/child relation-
ship.The calling process is the parent, and
the called process the child. If the child
process terminates before its parent, the
parent is sent a CLD or CHLD (child) signal.
The parent is expected to confirm the
demise of its child, so to speak. If the parent
fails to do so, the child process is left in the
process table as a zombie [1]. After all, how is
the kernel to know if or when the parent will
check the exit status of its child? The process
entry has to be kept, to cover this possibility.

Most of the other resources will have been
released by this time.The former child no
longer exists, and kill -9 will have no effect
on it.The zombie disappears when the par-
ent process terminates or queries the exit
status of the child.

Zombies

Figure 3a: SSH waits for child processes to termi-
nate before closing the connection. Typing ~. kills
the connection.

Figure 3b: Time-consuming background processes
need to be launched with nohup, if they are to
survive the ~. escape sequence.


