Zack’s Kernel News

M Input Layer Info

The input layer has received extensive
revision over the 2.5 time-frame, leaving
many unanswered questions about how
to deal with any problems. As input
devices are a fairly integral part of most
systems, this has made it difficult for
some driver writers to catch up to the
current state of the input layer.

With the entrance of the 2.6 tree,
however, Vojtech Pavlik has written a
nice long document, describing various
problems that might come up with the
input layer, and what developers can
do about them. The document is also
very useful to ordinary users, who
encounter error messages and odd
behavior with no obvious explanations
or solutions. |

M Broken Drivers

Some kernel decisions only make sense
in the light of less visible aspects of the
context in which they were made. The
Initio 9100 SCSI device driver, for exam-
ple, has been marked “Broken” in the 2.6
tree, in spite of the fact that it might
seem to run perfectly well.

Why was it marked broken? Simply
because there is currently insufficient
error checking in the driver. If anything
unexpected happens at run-time,
the drive could become massively cor-
rupted.

A number of drivers have been marked
“Broken”, or just outright removed in the
Linux 2.6 kernel for various reasons.
Some are similar to the above, while oth-
ers just have to do with having no visible
maintainer. Linus Torvalds has become
increasingly strict about excising code
that is not maintained, even if it seems
usable.

His argument is typically that if a fea-
ture is so useful, then someone should
be willing to maintain it; and if they
aren’t, then clearly people aren’t so
interested in the feature. It may not be
entirely accurate, but it does get the
point across. Cruft, whether it is actual
or only apparent, is not welcome in
Linux. |

M Encrypted files

Michael A. Halcrow has decided to
design (and possibly implement) his
own encrypted filesystem for use under
Linux. There already exist several
attempts at such a beast, but all have so
far come up short. The question of
whether to start a new project or partici-
pate in the most promising alternative is
an open one, but there seems at least no
harm in giving it a shot. Michael’s first
step, unlike many of the alternative
designs, has been to ask as many people
as possible for the important features
they would want to see in an encrypted
filesystem.

This questioning has had some inter-
esting results. Among the desired
features, seamless encryption seems to
be very popular, in which unencrypted
files could be passed through to the disk
with only minimal processing overhead,
and the encryption layer itself could be
presented as a module that would layer
itself on top of any filesystem that the
user would prefer to use such as ext3,
ReiserFsS, etc.

Also, among the various options for
how to organize the encrypted data, it
seems that users would prefer to associ-
ate a given key with a specific file, as
opposed to a block on the disk or any-
thing else; and also to encrypt as much
data about the file as possible, including
file size, whether the executable bit is
set, etc.

Another popular feature that was
requested is the ability to extend Nau-
tilus and Konqueror (and presumably
other filesystem browsing tools) to seam-
lessly take advantage of the encryption
features. Also, where feasible, one
desired feature that was mentioned
involves securely “shredding” a file on
deletion, so that it can’t be recovered
from the disk at all (or at least as much
as possible). Whether Michael will
implement any of this is still an open
question, but an encrypted filesystem is
an interesting problem that many devel-
opers have struggled to address over the
years. |

n May 2004 www.linux-magazine.com

m

The Kernel Mailing List comprises the core of
Linux development activities. Traffic volumes
are immense and keeping up to date with
the entire scope of development is a virtually
impossible task for one person. One of the
few brave souls that take on this impossible
task is Zack Brown.

Our reqular monthly
column keeps you up
to date on the latest
discussions and
decisions, selected and
summarized by Zack.
Zack has been
publishing a weekly
digest, the Kernel Traffic Mailing List for
several years now, reading just the digest
is a time consuming task.

Linux Magazine now provides you with
the quintessence of Linux Kernel activities
straight from the horse’s mouth.

M SysFS development

The SysFS filesystem is experiencing
massive development activity during 2.6,
in spite of the fact that this tree is sup-
posed to aim for stability.

It is not actually so unusual for parts
of the kernel to be built out during a sta-
ble series, but in the case of SysFS,
patches are coming in from many places.
All want to ensure that their drivers are
in sync with what SysFS is supposed to
do; while SysFS itself keeps changing.

In February, Benjamin Herrenschmidt
proposed a change to SysFS, to add a
“devspec” property to provide the full
Open Firmware path to devices on Pow-
erPC and PowerPC64 that had Open
Firmware support. The original idea was
to have PCI entries include an “OF”
path, but that turned out to lead to ever-
increasing complexity of user-code, and
of the SysFS directory tree.

As Linus Torvalds outlined in the
linux-kernel mailing list, the PCI layer
should not have “magic” knowledge of
particular platforms; but, the platform
layer could refer back to the PCI layer as
necessary. All of these decisions taking
place in the 2.6 time frame incite driver
developers to submit patches to make
the best use of these new SysFS changes.
Already some developers (notably
Alexander Viro) are complaining that
SysFS development should at least start
to slow down, if at all possible. |



M BIOS sanity

One perennial problem in operating sys-
tem development is the proliferation of
BIOSes in the various available hard-
ware. These BIOSes tend to be closed
source, and more often than not, quite
buggy. Recently, some of these issues
surfaced in the 2.6 kernel tree. Tony
Lindgren noticed that some BIOSes
reported incorrect values for CPU speed
and voltage values.

In particular, his Emachines m6805
claimed his 1800MHz CPU was only run-
ning at 1600 MHz. In response to this, he
created a patch to perform sanity checks,
by attempting to confirm the validity of
the BIOS’ claims with regard to a run-
ning system.

Many, many such patches have gone
into the kernel before now, and many,
many will go into it in the future. It’s a
pity more chip manufacturers don’t pub-
lish the source code to their BIOSes, or at
least respond to bug reports in a timely
fashion. |

BC++

The relationship of C ++ code to the ker-
nel is a complex one. Officially, the
kernel is written in C, and C++ has no
place either in the kernel code proper, or
in any of the modules which are written
for Linux. In practice, however, it is pos-
sible to carefully write a kernel module
in C++, if the module is restricted to
using only a subset of the C++ specifi-
cation.

In addition to this, it is possible that a
module may include within itself, a
patch to modify Linux’s handling of
C++ code to be more inclusive. Such
patches may or may not ever be accepted
into the official kernel tree, but they do
allow users to compile and run the driver
if they so choose.

The reasons for attempting to write
drivers in C ++ tend to boil down to per-
sonal programming matters. This past
January, as an example, quite a bit of
effort was expended by developers in
order to get a C++ kernel module run-

ning under 2.6, just because the module
had originally been written in C++, and
so it was easier to go through the compli-
cated hoops of supporting it under 2.6,
than it was to just rewrite the (quite siz-
able) driver.

This does leave the question of why
C++ was chosen in the first place unan-
swered. One reason that at least has
some legitimacy on its side, is that a dri-
ver may originally have been written for
another operating system, which sup-
ported C++ drivers, and then needed to
be ported over to Linux.

In that case, it would be conceivable
that the work of supporting C++ would
be less than the work of porting the dri-
ver to C.

In most cases, however, developers
that tend to choose C ++ coding for their
kernel work, seem to do so because they
just prefer C++ programming styles and
would like to see more C++ code in the
kernel. |

EASY TO BUY e EASY TO SET UP e EASY TO SEE

EasyVserver solutions
Debian or RedHat O/S
True “root” access

4, 6 or 8GB raid space
11P address

Highly secure

p-p-p-pick up

a dedicated linux server

Make the most of Linux technology with the big name in Web registration and hosting
packages. Our flexible, scalable, secure EasyVserver solutions start at just £39 per
month. Back up by unrivalled support and know-how. If you want the best of Linux

come along for the ride.

log on today at: www.easyspace.com Ea Syspace m

your perfect partner for the web

Established in 1997 with over > million customers. Accredited ICANN registrar & nominet member. Prices exclude VAT.



