
hj@asteroid:~$ echo $((1+1))
2

Alternatively, you can define variables,
and assign values to them, before using
them in calculations:

hj@asteroid:~$ a=4
hj@asteroid:~$ b=5
hj@asteroid:~$ echo $((a*b))
20
hj@asteroid:~$ echo $((a-b))
-1

Use a semicolon to fit these statements
and calculations in a single line. The
semicolon connects the commands. The
previous example can also be expressed
in a single line, as follows:

a=4; b=5; echo $((a*b))

The other operators are the minus sign (-
) for subtractions, the asterisk (*) for
multiplications, and the forward slash
(/) for integral divisions.

A double asterisk (**) is used as the
exponential operator, for example, echo
$((2**16)), and the percent sign repre-
sents the modulo operator, which
ascertains the remainder in integral divi-

sions. For example, echo $((5%3))
equals 2, as there is a remainder of 2
when you divide 5 by 3.

What About the Decimal
Point?
If you type something like echo $((1/3))
you will note that this is not really an
integral division, but bash can’t handle
floating point numbers. Enter bc. Type bc
to launch the calculator.

First time users may be confused by
the fact that the command does not dis-
play a prompt, but don’t panic, bc is
waiting for your input all the same. You
can either type quit or press [Ctrl-d] to
quit the calculator.

As you would expect, arithmetical
expressions can be formulated with the

The Bourne Again Shell), or bash
for short is the default shell on
Linux. It accepts commands and

interprets them, launches programs, and
manages processes. In addition to this,
bash stores environment variables and
allows other programs to use them.
Besides a variety of programming fea-
tures, bash can also handle the four
basic mathematical operations (addition,
subtraction, multiplication, and divi-
sion), and the modulo operator, and is
thus capable of evaluating mathematical
expressions.

However, as bash can only handle
integer values (whole numbers without
decimals) of up to 32 bits, it isn’t exactly
a mathematical genius. If you need to
work with floating point numbers, why
not try bc, the “Basic Calculator”? The
program can be used interactively or
scripted.

A Tool to Reckon with
Bash requires a special syntax for mathe-
matical operations. Older versions need
to add a dollar sign prefix and enclose
the mathematical expression in square
brackets. Bash 2.0 or later encloses the
expression in double round brackets.
Even though later bash versions can
handle the older notation, we will be
sticking to the double round brackets in
the following examples.

Bash performs calculations with “nor-
mal” numbers and variables, for
example:

82 May 2004 www.linux-magazine.com

Command LineLINUX USER

It doesn’t always have to be a GUI-

based calculator like xcalc or Kcalc –

bash can handle simple arithmetical

operations, and for more advanced

math you can always try bc.

BY HEIKE JURZIK

bash & bc

In the Shell Calculator

Although GUIs such as KDE or GNOME are
useful for various tasks, if you intend to get
the most out of your Linux machine, you will
need to revert to the good old command
line from time to time. Apart from that, you
will probably be confronted with various
scenarios where some working knowledge
will be extremely useful in finding your way
through the command line jungle.

Command Line

normal operators: +, -, *, and /, and
brackets:

(1.1+2)*2 [Return]
6.2

Press [Return] after typing an expres-
sion, and bc will return the result. Type a
semicolon to separate operations:

1.1+2; 3.1-2 [Return]
3.1
1.1

bc stores a history of all your commands,
allowing you to use the arrow keys to
scroll back and forth through the most
recent commands, just like in the shell.

The four basic mathematical opera-
tions in bc are identical to those provided
by bash, but the exponential operators
are different. bc uses a circumflex (^)
instead of a double asterisk.

Variables
If you repeatedly use the same number
in a calculation, it makes sense to
declare it as a variable. The equals sign
is used to assign a value to a variable, for
example:

a=201; b=300

Unfortunately, bc does not tell you that it
has stored the variables. To display the
values of a and b, you need to type the
variable name and press [Enter] – in
fact, bc is extremely terse.

Any variables you define can be used
as numbers in calculations:

a*b
60300
a+b
501

You might be in for a surprise if you
attempt to divide these two variables: bc
returns a result of 0. There is a simple
answer, however. To support floating
point operations, you need to specify the
-l option when launching the program.
Fortunately, there is also a way of adding
floating point support at runtime. Enter
scale=value (where value is an integer
between 0 and 99) to specify the number
of decimal places bc displays (and calcu-
lates):

scale=23 [Return]
a/b [Return]
.67000000000000000000000

When performing divisions, you may
note that bc suffers from the same prob-
lem as any programs that calculate
floating points: rounding errors. For
example, 1/3*3 returns a value of
0.999999999 (the number of nines
reflects the number of decimal places
you specified), whereas the mathemati-
cally equivalent expression, 1/(3/3), is
calculated correctly, returning 1.

On the upside, bc handles negative
numbers really well. Simply prefix a
minus sign to a number:

a + -b
-99
-a
-201

Other Worlds
bc has quite a few tricks up its sleeve,
mathematical functions such as the
square root, for example:

sqrt(144)
12

By default, bc will use the decimal (base
10) system. However, it is quite simple to
assign a different base:

ibase=16
A
10

Anything entered after this ibase com-
mand will be interpreted by bc as
hexadecimal input – including the com-
mand to switch back to base 10,
ibase=10. Of course, bc expects hexa-
decimal input, and correctly interprets 10
as 16 in decimal, so why should it
change? The correct syntax in this case is
ibase=A. To check which base the pro-
gram is working in at present, type ibase
without any additional parameters.

While ibase sets the input format,
obase defines the base for output. If you
are interested in discovering the hexa-
decimal value for 15, type the following:

obase=16 [Return]
15 [Return]

F

You should not have any difficulty reset-
ting obase to base 10. obase=10 will do
the trick, assuming that you have not
changed the ibase, i.e. the input format.

Check it out
bc is actually a programming language,
as a quick review of the manpage con-
firms. This allows the program to
interpret control structures, similar to
the ones used by C or C++, for more
complex tasks. To output the squares of
the numbers 1 through 10, use a simple
for loop. This can save a lot of typing:

for (i=1; i<=10; i++) print U

i^2,"\n";
1
4
9
16
25
36
49
64
81
100

The syntax of the loop is easy to under-
stand. There are three expressions in the
brackets, followed by a statement. The
first expression (i=1) is performed
exactly once before the loop commences.
The statement is performed until the sec-
ond expression becomes true, i.e. until
i<=10. The third expression is executed
on each iteration, i.e. i is incremented.

There is no need to launch bc, enter a
command, and terminate the program,
each time you need to perform a simple
calculation. You can use a pipe to pass a
calculation to bc, which is in fact a
sneaky way of getting bash to do floating
point calculations:

hj@asteroid:~$ echo 1/3 | bc -l
.33333333333333333333

Using backticks (`), you can even store
calculations in shell variables:

x=`echo "$a*$b" | bc -l`

multiplies the values of the shell variables
a and b, and stores the result in x. ■

83www.linux-magazine.com May 2004

LINUX USERCommand Line

