
will output its results to the standard
output channel, unless instructed other-
wise. This produces text output in a
terminal window. Also, each process has
a channel for standard error output, and
uses this channel to indicate error states.

A pipe simply attaches the standard
output from one process to the standard
input of another, allowing one process to
read what another process has written.
This efficient and direct communication
method assumes that both programs are
running at the same time.

Searching a logfile for specific strings
provides a good example of how to use a
pipe. The following command line uses
grep to find all the GET entries in an
Apache logfile. It then uses cut to sepa-
rate the first field (containing the client’s
IP address), and sorts the results numeri-
cally before going on to call uniq to
avoid outputting each hostname more
than once.

grep GET access_log | cut -d U

" " -f 1 | sort -n | uniq > U

hosts.txt

The pipe only affects the standard input
and output. It does not redirect the stan-
dard error channel. If one of the
programs were to output an error mes-
sage or alert, the message would not be
sent to hosts.txt. Instead, it would dis-
play directly in the shell. If you need to
redirect standard error output, you have
to do this explicitly:

find /etc -type f 2>/dev/null U

-print0 | xargs -0 grep -i U

imap 2>&1 | less

Unix-style operating systems assign a
consecutive number to each open file.
Standard input is 0, standard output 1,
and standard error 2. The normal re-
direct >hosts.txt refers to the file de-
scriptor 1, that is, standard output,
whereas 2>/dev/null redirects descrip-
tor 2, the standard error channel. Note
that modern Linux operating systems
provide pseudo files for these streams:
/dev/fd/0, /dev/fd/1, and /dev/fd/2.

The statement we just looked at first
finds regular files in /etc. If error mes-

When processes need to talk,
signals are the easiest way of
doing so [1]. No matter how

effective this technology may be, it still
has a number of drawbacks. Only a few
signals exist, and this restricts the possi-
ble content of the messages involved.
Also, users – with the exception of root –
are only permitted to signal their own
processes. They are not allowed to com-
municate with foreign processes.

There are several other channels that
allow processes to talk: from pipes,
named pipes and sockets, through lock
files and file locks, to System V inter-
process communications and shared
memory.

Pipes
Standard input and output channels are
assigned to each process on a Unix-style
operating system. The process expects to
receive data via the standard input chan-
nel. When a user composes an email
message in the command line, the client,
mailx, will use standard input to read
that message. In a similar way, a process

Unix-style operating Systems clearly

distinguish between processes, while

at the same time allowing for

freedom of communication. While

troubleshooting a system, an admin

needs a clear view of the scenario to

help the Linux process reactivate the

interrupted dialog.

BY MARC ANDRÉ SELIG

Insider Tips: Inter-Process Communication Beyond Simple Signaling

Official Calls

62 June 2004 www.linux-magazine.com

Admin Workshop: Pipes, sockets & locksSYSADMIN

sages occur, they are sent to
/dev/null, that is, a black hole.
The statement then searches
for the imap string in the files
it found. The search is not
case-sensitive. 2>&1 copies
any errors that occur to stan-
dard output, and redirects
both outputs to less. Inciden-
tally, the combination of find
… -print0, and xargs -0 en-
sures that this chain of
commands can handle file-
names that include blanks.

Pipes are simple and effi-
cient. However, their use is
limited. All of the processes
involved need to be launched
simultaneously, by the same
user, on the same computer.

Named Pipes
So-called named pipes are a (FIFO, first
in first out) variant of the pipe theme.
Instead of linking two programs directly,
they use special files for reading and
writing. mkfifo is used to create the files.
The advantage is that users do not need
to launch the programs at the same time.
The processes do no even need to belong
to the same user. A file created by mkfifo
/tmp/mas/test looks like this, when we
type ls -l /tmp/mas/test:

prw------- 1 mas users 0 MarU
7 13:17 /tmp/mas/test

The read and write privileges have the
same meanings as for regular files. The
named pipe reacts more or less like a nor-
mal file. You can redirect the output of an
arbitrary command to the named pipe:

ls /etc/mail/spamassassin U

>/tmp/mas/test

However, the ls command will freeze in
this case, as it will wait for the output to
be read, and this is not happening at pre-
sent. cat /tmp/mas/test in another ter-
minal takes care of this, and leads to the
following output:

local.cf
no-osiru.cf

Named pipes provide an extremely prac-
tical approach to passing messages to the

user working at the X11 console. Display-
ing the messages directly on the screen
background would distract the user –
besides which, XFree does not support
asynchronous text output outside of win-
dows.

It is common to create a FIFO con-
struct called /dev/xconsole, and con-
figure the system (/etc/syslog.conf) to
send messages to that location:

Copy messages to the X console
. |/dev/xconsole

Admins, or the current user, can simply
type cat /dev/xconsole to view messages.

Sockets
In comparison to named pipes,
sockets add another level of
abstraction to the communica-
tion between two processes.
The processes do not even
need to be running on the same
computer in this case. Sockets
provide an interface between
various communication proto-
cols, especially between the
typical Internet protocols, TCP
(Transmission Control Proto-
col), and UDP (User Datagram
Protocol). Other variants, such
as Unix domain sockets only
work locally, that is, within a
single system.

Sockets are the typical com-
munication method on the Internet.
Users surfing the Web, exchanging email
messages, or establishing terminal con-
nections all use sockets.

Most socket-based applications follow
the client-server paradigm. Telnet or
Mozilla are examples of clients, inetd or
Apache (see Figure 1), the appropriate
servers. Listing 1 provides a very mini-
malistic example of a TCP-based server.
In real-life applications, processes do not
typically handle the data which is passed
to them directly. Instead the server will
typically hand the information to a child
process, allowing the server to get on
with its job, such as waiting for the next
connection.

Sockets exist in many variants and
with many options. The distinction
between Unix domain and Internet
domain sockets is an important one.
Internet domain sockets are used for
global communication. Unix domain
sockets are far quicker, and although
restricted to the local computer, cause
less overhead.

For example, MySQL will automati-
cally use Unix domain sockets, if the
server is running on the same computer
as the client. Typing ls -l /var/lib/mysql/
mysql.sock displays the following:

srwxrwxrwx 1 mysql mysql 0 Feb U

13 14:24 /var/lib/mysql/U
mysql.sock

Lockfiles
The inter-process communication va-
riants discussed thus far have become

63www.linux-magazine.com June 2004

SYSADMINAdmin Workshop: Pipes, sockets & locks

Figure 1: Admins can use a telnet command to talk to their servers directly.
Typing HEAD / HTTP/1.0, followed by an empty line, tells this Apache server
to reveal some information on the Linux Magazine homepage.

01 #!/usr/bin/perl -w
02 use strict;
03 use IO::Socket;
04
05 my $socket = IO::Socket::INET-

>new(
06 Listen => 5,
07 Proto => "tcp",
08 LocalPort => 2345,
09 ReuseAddr => 1,
10)
11 or die "Problem: $!";
12
13 while (my $client = $socket-

>accept) {
14 my $line = <$client>;
15 print "Connection from " .

$client->peerhost . ": $line";
16 print $client "Demo\r\n";
17 }

Listing 1: A simple TCP
server in Perl

reading the lockfile.
The file contains the
PID of the calling
process. If the process
still exists, you can
assume that the re-
source is still in use. If
the process whose ID
is stored in the lockfile

has terminated, a new process can
remove the existing lockfile and create a
new one.

Malevolent processes could remove
the lockfile immediately, and an ignorant
process will not bother checking. This is
an important aspect of many locking
techniques. Locks are often advisory.
Friendly programs will take this advice,
but the system will not prevent anyone
with appropriate privileges from access-
ing the resources, regardless of the lock
status.

File Locks
If the locked resource is a normal file on
a local filesystem, a modern Unix-style
operating system can do without the
lockfile. Instead, the process can simply
lock the file. The process can addition-
ally decide whether to allow any other
processes read access, or whether it is
necessary to lock down access to the file
completely.

File locks of this type are often seen in
the context of email systems, for the mail
spools in /var/mail, or /var/spool/mail.
Careful use of locks is particularly
important here, as email is typically
handled asynchronously. When a user
deletes a message, that user’s client re-
writes the mail spool file, and removes
the messages. If a new message were to
arrive at the same time, the results could
be dramatic, if not for locking. If you
were lucky, the deleted message might
still exist. In the worst case, the new
message would end up somewhere in
the middle of the spool file and arbitrar-
ily delete parts of other messages.

The convention is to have the Mail
User Agent (mail client) lock the mail
spool before it starts performing changes
of this kind. The Mail Delivery Agent
will respects existing locks, and not
deliver mail without locking the spool
file first.

There are a number of locking variants
for email handling. Listings 2 and 3
show the important alternatives, which
are often used parallel to one another.
A semaphore, just like the ones dis-
cussed earlier (/var/lock), can be written
to /var/mail and has the advantage
of working perfectly well on distributed
filesystems such as NFS or AFS. In
contrast, file locks (flock() or fcntl())
typically fail, or provide unreliable
results, across networked filesystems. If
they work, file locks have the advantage
of being quicker and more efficient than
lock files, and the processes involved do
not require write access to the mail
directory. ■

more abstract as we went on. An
Internet domain socket can send data
more or less anywhere. Real-life appli-
cations often require solutions that
provide something complex than simple
signaling, but with a smaller footprint,
and far less overhead than a convoluted
socket.

Lockfiles or traditional semaphores
can provide these techniques. They indi-
cate that a specific resource is currently
in use. For example, a program that uses
the serial port can store its process ID in
a special file, and thus indicate that it
has reserved the port for its own use.
Locks of this type are typically found in
/var/lock.

As Figure 2 above shows, the uucp
group traditionally has write permissions
for /var/lock. The UUCP (Unix to Unix
copy) program provides asynchronous
file transfers between machines and was
commonly used for copying files from
one machine to another across modem
connections.

Users who need access to semaphore
controlled resources are typically added
to the uucp group by the root user, allow-
ing them to create lockfiles as required.
Our example shows a file called
LCK..ttyS0. The file indicates that the
user mas needs exclusive access to the
/dev/ttyS0 device.

Other processes can check whether
this information is still applicable, by

64 June 2004 www.linux-magazine.com

Admin Workshop: Pipes, sockets & locksSYSADMIN

[1] Marc André Selig,“Admin Workshop: Sig-
nal-Based Inter-Process Communication”:
Linux Magazine, Issue 42, May 2004

INFO

Modern System V Unix-type systems, such
as Linux, have a wide range of IPC (Inter-
Process Communication) facilities in
addition to the ones discussed so far.The
ipc() library function provides semaphores,
and message queues. Many mechanisms
produce similar results, but are anchored in
the BSD tradition.

Shared memory is another interesting tech-
nology, that allows two processes to share a
common memory area.This allows for sim-
ple and efficient data exchanges.

System V IPC

01 #!/bin/sh
02 lockfile -ml
03 echo I can now delete

messages.
04 lockfile -mu

Listing 2: Semaphore-
based mail lock

01 #!/usr/bin/perl
02 use Fcntl ':flock';
03 open (MAILBOX,

">>/var/mail/$ENV{'USER'}")
04 or die "Cannot write to

mailbox: $!";
05 flock(MAILBOX, LOCK_EX);
06 print "I can now delete

messages.\n";
07 flock(MAILBOX, LOCK_UN);
08 close MAILBOX;

Listing 3: Mail lock
with flock()

Figure 2: Unix-style operating systems have a directory called /var/lock
for lockfiles. The convention is to allow the uucp group write access.

Marc André Selig
spends half of his
time working as a
scientific assistant at
the University of Trier
and as an ongoing
medical doctor in the
Schramberg hospital.
If he happens to find time for it, his
currenty preoccupation is
programing web-based databases on
various Unix platforms.

TH
E

AU
TH

O
R

