
48 June 2004 www.linux-magazine.com

Power Tools: SecretsKNOW HOW

Finding information is not difficult.
The real problem is knowing what
to look for in the first place.

apropos
This utility will search through each man
page looking for a particular word or
phrase. This can be a keyword or regular
expression, and so can be quite complex.
It will then output each appropriate com-
mand, along with its description. So, if
you’re looking for a command that’s
related to passwords try as in Listing 1:

The -e switch will only match exact
words (so in the above example, the
phrase passwords would not get
matched). As you are probably aware,
the number in brackets indicates the sec-
tion of the man pages where a particular
command exists. See Table 1 for details.
You can invoke a particular section by
using:

man chage 1

whatis
whatis is a very simple command
that produces a useful
description of the
command.

used for speed purposes. The magic file
indicates which bytes need to appear in
which position to indicate a particular
file type. The file description can be as
simple or complex as needed. MP3s, for
example can indicate their bit rate and
their recording frequency.

$ file Vexations.mp3
Vexations.mp3: MPEG 1.0 layerU
3 audio stream data, 48 kBit/sU
, 44.1 kHz, jstereo

Anyone with superuser privileges can
recompile a magic.mgc file with:

$ file -C

which
Linux commands are spread across dif-
ferent paths. My system has 2242
commands in seven different directories!
(Press the tab key twice and let tab com-
pletion show you how many are
available, followed by echo $PATH).
Determining which command is exe-
cuted from which directory is the job of a
command called, er, which!

$ which file
/usr/bin/file

If an install, or compile, is causing prob-
lems, or you can not see why a particular
command is not getting called, then
which will indicate the command that is
getting called in its place. This is helpful
in finding out when older (or newer) ver-
sions of programs are being used
erroneously. It can also be used with file
to determine if the command about to be
run is a program, symlink, or script.

$ file `which which`
/usr/bin/which: Bourne-Again U

shell script text executable

A Saucerful of Secrets
With everything in Linux being treated
as a file, it’s no surprise that a large
number of commands exist to handle
them.

$whatis apropos
apropos (1) - search the manualU
page names and descriptions

This is the description that appears on
the first line of the man page, and the
same text that appears with the apropos
command. whatis can also take regular
expressions, and is often used to quickly
check a command without having to for-
mat and display the whole man page.

file
Before reading a text file, with either cat
or more, it is sensible to check that it is,
in fact, text. Failure to do so may cause

your screen to fill
with junk, and re-

quire a reset
command be-
fore your shell
becomes legi-
ble again. This

command lets
us know in

advance what
type of file this is. It

is an improvement
over the use of file exten-

sions (which may be wrong, or
non-existent), as it reads a portion of
the file and uses its contents to deter-
mine the type. For example, a text file
will be one that has carriage returns in
it, and a gzip file will begin with a spe-
cific header with the bytes \037 and
\213.
file determines the type by using a file

of magic numbers stored at /usr
/share/misc /magic and /usr/share/misc
/magic.mgc, the latter being a pre-com-
piled version of the original magic file,

Linux – Worst Kept Secrets

Hidden in plain sight
Linux has a wealth of command line tools. Everybody has their favorite. For

every cat or more, there’s probably another ten commands that rarely see the

light of day. This month, Steven Goodwin uncovers some hidden gems that

don’t deserve to remain hidden for much longer. BY STEVEN GOODWIN

49www.linux-magazine.com June 2004

KNOW HOWPower Tools: Secrets

mentary set, we can only replace with a
single character.

$ uname -v | tr -c [a-zA-Z0-9] _
_44_SMP_Sun_Dec_28_19_07_54_U
GMT_2003_

There is also a snappy shortcut for
alphanumeric characters called :alnum:,
which can be used in place of the rather
verbose [a-zA-Z0-9].

Another feature of tr lets us delete
individual characters. This gives an easy
and quick way of removing spurious car-
riage return codes from text files that
have originated from within the Win-
dows universe.

tr -d "\r" < windows.txt > U

linux.txt

Referring again to our filename fixer
above, we could also have decided to
delete the problematic characters,
instead of changing them. Giving us,

$ uname -v | tr -c -d [:alnum:]
44SMPSunDec28190754GMT2003

Squeezing is a technique to compress
several repeated characters into one. We
could use this to replace multiple blank
lines with a single carriage return.

$ tr -s '\n' <many_blank_lines U

>few_blank_lines

Note that when we redirect both input
and output, the names must differ. This
is because the redirection truncates the
destination file to zero before the com-
mand executes. To replace the original
file, you could include this command in
a small script that uses mktemp to gener-
ate a temporary, and unique, filename.

cut
cut is a program that is used to extract
columns of data from the input. A popu-
lar use of this command is to extract
information from commands like ls and
ps which are naturally tabulated. By
default, the columns are considered sep-
arate by the presence of a tab. However,
this can be changed to any arbitrary
character or symbol with the -d switch.
Each column is termed a field, and you
can output individual fields, or groups
therefore, using -f.

$ ls -l | tail +2 | tr -s ' ' |U
cut -d ' ' -f 3 | sort | uniq
root
steev

The above example uses a little extra
massaging, firstly to remove the initial
line from ls (tail +2, see Table 2) and
then to squeeze the spaces between each
field into one (tr -s). From here cut simply
outputs field three (the user name) of
each file in the directory. Since there are
likely to be a lot of duplicates, we sort the
names into alphabetical order and then
use uniq, which acts like tr‘s squash, but
acts upon successively identical lines.

cut can output multiple fields by
applying the -f option with a comma
(which gives only the columns
requested), or a hyphen (which shows a
range of columns).

$ # Give the time & date U

of every file
$ ls -l | tail +2 | tr -s ' ' |U
cut -d ' ' -f 6-8 ■

Arguement Description
unzip -a Converts all text files to use Linux-style carriage returns when decompressing
echo -n Used on its own will produce zero length files (normal echo adds a carriage return)
cat -n Adds numbers before each line in the file.Very useful when printing program listings.To number

non-blank lines use -b
tail +2 Outputs the whole file, starting from the second line. Useful for removing the headings on

programs like ls and ps
grep -v Instead of returning every line that matches, -v causes grep to match every line that doesn’t.

grep -v grep will therefore ignore the grep process(es) itself which can be useful when searching
the process list

ls -1 Lists each file name on its own line, without the ‘total’header

Table 2: Secret Arguments

Section Description
1 Executable programs or shell commands
2 System calls (functions provided by the

kernel)
3 Library calls (functions within system

libraries)
4 Special files (usually found in /dev)
5 File formats and conventions eg

/etc/passwd
6 Games
7 Macro packages and conventions eg

man(7), groff(7)
8 System administration commands
9 Kernel routines [Non standard]

Table 1: Man page sections
01 $ apropos password
02 afppasswd (1) - netatalk password maintenance utility
03 chage (1) - change user password expiry information
04 chpasswd (8) - update password file in batch
05 crypt (3) - password and data encryption
06 ... and so on ...

Listing 1: apropos

tr
tr is short for translate, and substitutes
one set of characters with another. It can
also remove characters or squeeze multi-
ple occurrences of them together to be
replaced by a single instance. In all
cases, input is taken from stdin, and fed
to stdout. Translations are often used to
demonstrate rot13 processing, or con-
verting text into lowercase. In these
cases, both sets of characters must be of
equal size.

we can use the A-Z shorthand U

rather than the alphabet in full
$ tr [A-Z] [a-z] < afile U

> a_lower_case_file
$ tr [a-zA-Z] [n-za-mN-ZA-M] U

< afile > a_rot13_file

However, tr has many more uses than
that. It can be used to validate potential
filenames by changing non-alphanu-
meric characters into a filesystem
friendly underscore. This requires the -c
(complement) option, meaning ‘any-
thing except the following’. As we have
no way of knowing how many letters
and numbers might exist in the comple-

