
If you type ps ax immediately after
booting a Unix computer, you will be
confronted with a mass of active pro-

grams. From arcane kernel processes
through numerous daemons, whose
names typically end with a d, to getty
processes for the virtual consoles, and
xdm, gdm, or kdm for the GUI-based
login – a wonderful, wacky world.

Maybe you’ve been wondering who
told this horde of processes to launch on
your machine, who coordinates and
monitors them. On booting, the kernel
calls just one program which in turn ini-
tializes the system. The program is aptly
called init and it handles the launching
of the other programs with only one or
two exceptions.

The system administrator, or the man-
ufacturer of your Linux distro (if you
leave the defaults unchanged) decides
which programs the init process should
launch, and under what circumstances.
There is no real reason to replace the init
program, as it offers lots of scope for
configurations.

One for All
Traditionally, Linux uses two different
init variants. The first is called simpleinit
and is simple to use, as the name would
suggest. What simpleinit does is to parse

a long script file. The script launches all
the programs required to run the system.
If needed, the script can also parse con-
figuration files, or even create them,
before going on to launch the required
daemons.

Although simpleinit’s ease of use and
elegance are convincing arguments, it is
too restricting for most Linux distribu-
tions. It stores the full range of system
status information in a single file. This
makes life difficult for today’s package-
oriented distributions. Each time a user
installs, or removes, a package, the pack-
age manager has to edit the central script
file. While doing so, it has to respect the
changes made by the user, if any – a task
which is prone to error.

This has led most modern distribu-
tions to adopt the Sys V init model. This
init process is modeled on Unix System
V. It uses a fairly complex hierarchy of
configuration and script files, along with
symbolic links. This allows init to map
various system states with respect to the
software available for the user to install,
and to the system’s operating modes.

Little Helpers
A Sys V Init differentiates between sin-
gle-user mode, which is used for system
maintenance, a stand-alone workstation

mode where the network connection is
disabled, and a normal mode with the
full range of services. Most systems also
differentiate between GUI and non-GUI-
based logins, which allows them to run
on partially configured new installations,
or with an incorrect graphics configura-
tion.

These different system states are
known as runlevels. Each runlevel is
indicated by a single-figure number or
letter. There is a widespread convention
that uses runlevel 0 for shutting down
the computer, and runlevel 6 for a
reboot. Runlevel 1 (also known as s or S)
enables single-user mode with network-
ing and user logins either restricted or
disabled. This allows the root user exclu-
sive access to the system for main-
tenance work. Runlevels 2 through 5 are
configurable, and distributions use them
differently. As a rule of thumb, the
higher the runlevel, the more features it
should have.

As Sys V Init is so widespread, we will
be focusing on it in this article.

Central Configuration
The first configuration file for init is
called /etc/inittab. The program parses
the file immediately after booting the
system, and the contents of the file

On booting, a typical Linux system

launches numerous tools that config-

ure the system and initialize services,

which then carry on running in the

background. Init is the parent of all

these processes. Its structure is simi-

lar across most Linux distributions.

BY MARC ANDRÉ SELIG

Insider Tips: The Sys V Init Process

Starting Lineup

61www.linux-magazine.com July 2004

SYSADMINAdmin Workshop: Sys V Init Process
Lada Form

anek,visipix.com

like for this column, but make sure your
choice is unique. The second column
indicates in which runlevels this service
will be enabled. In our example, lines 12
through 18 execute exactly one rc script
with appropriate parameters for each of
the runlevels, 0 through 6. The shut-
down command in line 21 is available in
runlevels 1 through 5.

The third entry is for an action that
describes how and when the init process
should run the command in the line. The
action is typically wait or respawn. wait
tells init to run the program in column
four once only, whereas respawn tells init
to keep on launching the program when-
ever it terminates. Wait is typically used
to initialize the system whereas respawn
entries are for services that need to be
running. Even if a service crashes, the
system should be able to relaunch it.

The inittab in Listing 1 shows a few
special actions. Line 2 sets the default
runlevel (initdefault); this is the runlevel
the system will enter on booting. The
sysinit entry in line 6 runs init first, then
the entries with boot (simultaneously)
and bootwait (in sequence). There are a
few more actions for special cases that
allow the system to react to signals from
an uninterrupted power supply, for
example.

Init scripts
A quick investigation of Listing 1 tells us
that the init process does not have a lot
to do. It parses inittab, discovers the
default runlevel (2) in line 2, launches
an initialization script, rcS, and then
another called rc 2, followed by a few
getty processes (in lines 24 through 29).
The latter display the login prompts on
virtual consoles tty1 through tty6. Inci-
dentally, the rc and rcS scripts are

referred to as sequencer scripts on HP-
UX. There is a good reason for this, as
they call the start scripts in the right
sequence.

The rc scripts do most of the work.
The script names are configurable, and
vary depending on your distribution.
This said, they all do more or less the
same thing: they launch the start scripts
in a clearly defined order. The details are
stored in specific directories. The rcS
searches /etc/rc.S, and rc 2 searches
/etc/rc2.d, as you might have guessed.
These directories typically point to
scripts (mostly using symlinks or
hardlinks) with more human sounding
names. Figure 1 shows one of these
directories on a Debian system.

determine what happens next. The
major components of inittab are shown
in Listing 1.

Each line in the configuration file con-
tains four colon-separated elements.
This principle is common with tradi-
tional configuration files. For example,
you will find that passwd or the tradi-
tional printcap printer database both use
this approach.

The first column in an inittab line has
a short mnemonic for the program with
up to four characters, although one or
two characters are more common.
Admins are free to enter whatever they

62 July 2004 www.linux-magazine.com

Admin Workshop: Sys V Init ProcessSYSADMIN

01 #! /bin/sh
02
03 test -x /usr/sbin/sshd || exit

0
04
05 set -e
06 case "$1" in
07 start)
08 echo -n "Starting sshd"
09 /usr/sbin/sshd
10 echo "."
11 ;;
12 stop)
13 echo -n "Stopping sshd"
14 kill `cat

/var/run/sshd.pid`
15 echo "."
16 ;;
17 esac
18
19 exit 0

Listing 2: A minimalistic
init script

01 # Default runlevel
02 id:2:initdefault:
03
04 # Script to run at system boot
05 # initialization and

configuration
06 si::sysinit:/etc/init.d/rcS
07
08 # Single-user mode
09 ~~:S:wait:/sbin/sulogin
10
11 # The rc scripts for the

runlevels
12 l0:0:wait:/etc/init.d/rc 0
13 l1:1:wait:/etc/init.d/rc 1
14 l2:2:wait:/etc/init.d/rc 2
15 l3:3:wait:/etc/init.d/rc 3
16 l4:4:wait:/etc/init.d/rc 4
17 l5:5:wait:/etc/init.d/rc 5
18 l6:6:wait:/etc/init.d/rc 6
19
20 # React to

[Ctrl]+[Alt]+[Delete]
21 ca:12345:ctrlaltdel:/sbin/

shutdown -t1 -a -h now
22
23 # Getty processes
24 1:2345:respawn:/sbin/getty

38400 tty1
25 2:23:respawn:/sbin/getty 38400

tty2
26 3:23:respawn:/sbin/getty 38400

tty3
27 4:23:respawn:/sbin/getty 38400

tty4
28 5:23:respawn:/sbin/getty 38400

tty5
29 6:23:respawn:/sbin/getty 38400

tty6

Listing 1: Init Control File

Figure 1: The /etc/rc2.d directory on a Debian machine contains symbolic links to the start scripts for run-
level 2. the link name specifies which script rc should call when, and with what options.

Almost all init scripts are recycled. The
same script that launches a service at
boot time, can ensure that the service
terminates gracefully at shutdown. That
helps admins to keep things tidy. If a
daemon is moved to another location,
the admin needs to edit the start and
stop commands. This is why the init
scripts are normally grouped in a direc-
tory of their own, typically /etc/init.d.
The runlevel directories simply contain
links that point to the originals.

Listing 2 shows an init script that has
been reduced to the max. It starts by
checking the availability of the daemon;
it might have been deinstalled in the
meantime. It then goes on to call the
daemon, or kill it, depending on the
parameter. To kill the daemon, the script
sends a TERM signal to the process ID
that the daemon stores in /var/run.

When you install an additional ser-
vice, Sys V Init removes the need for the
package manager to change the existing
files. Instead, it simply copies the start
script to the target directory and creates
symlinks to match. ■

two parameters: start and stop. If the init
script is linked to a name that starts with
S in the runlevel directory (such as
S10sysklogd in our example), the rc
script for the runlevel will call it with the
start parameter. If the name starts with a
K instead (as in K11anacron), the para-
meter is stop instead.

The first letter in the script or link
name indicates whether to start, S, or
kill, K, the system service it refers to. In
our example, init will be stopping
anacron, and starting all the other ser-
vices, including a new anacron instance.
The first letters are followed by two
numbers that indicate the priority.
Scripts with lower priority are run before
scripts with higher priority. The numbers
simply indicate a hacking order.

When switching to runlevel 2, the
machine will first kill the anacron
process, if it is running. Having done so,
it calls sysklogd, then klogd, and nis. It is
a good idea to launch the syslog daemon
right at the outset. This allows you to
capture any error messages. The klog
daemon needs syslog running, and must
be launched after syslog. Complex ser-
vices, such as Apache, are best left right
to the end, when the rest of the system is
up and running.

Init Scripts Under the Hood
Init scripts also follow a convention.
Each script needs to understand at least

63www.linux-magazine.com July 2004

SYSADMINAdmin Workshop: Sys V Init Process

This article describes the basic runlevel con-
figuration steps for a Unix system. No
matter whether you have Linux, a BSD vari-
ant, Solaris, HP-UX, or some other Unix
derivative, Sys V Init will work in the same, or
a similar way.

Unfortunately, some Linux distributions do
not respect this convention, Suse for exam-
ple. A member of Suse’s staff warned us that
Suse can interrupt the configuration steps,
and reset or modify some settings.

If you need to create an init script on a Suse
system, you should keep to the guidelines in
/etc/init.d/skeleton.We will be looking at the
characteristics, and quirks, of this major dis-
tro in another article.

And now for Something
Completely Different

Linux New Media AG, based in Munich, Germany, is the world’s leading supplier of Linux content. Linux-Magazin, the
company’s first publication, was founded in 1994 and is one of the longest-running Linux magazines worldwide. The
English-language Linux Magazine, launched in 2000, has grown rapidly from a local UK publication to an inter-
nationally-active leader in the Linux Community. In total, Linux New Media currently publishes six monthly Linux
magazines, produces eight Linux-oriented web sites, and organizes the LinuxPark exhibition at major European trade
shows such as CeBIT.

To increase our coverage of and competence in North America, we are looking for an

EEddiittoorr
As part of a highly-motivated and experienced international team, you will be directly involved in the development and
positioning of Linux-oriented products. Your responsibilities will include planning and managing editorial themes,
writing articles, recruitment and management of authors, and representing Linux New Media in the North American
market.

Your profile:

• Professional experience as an editor

• Good overall Linux knowledge

• Interest in working as part of a virtual, international team

• A good communicator in person, by email and phone

• Able to organize your work independently and meet deadlines

Please send an overview of your background, qualifications,
and why you are interested in this position to:

Linux New Media AG
Brian Osborn
Business Unit Manager
bosborn@linuxnewmedia.com

