
program. The program reads the re-
sponse from the standard input channel,
that is, from the keyboard. After confirm-
ing, an error message appears, telling us
that we do not have root privileges. reis-
erfsck sends this message to the standard
error output.

The following grep command is
another straightforward example:

hj@asteroid:~$ grep blah *
file1:blah
file2:blah blah
grep: dir: Is a directory

In our example, the grep command is
searching all files for the word “blah”. It
finds matches in file1 and file2, and in
the case of dir, it complains that dir is a
directory rather than a file (more recent
grep versions simply ignore directories
without commenting on the fact, but the
Debian Linux grep 2.4.2 used for this
example, does not accept directories.)

Which Direction?
Programs do not care where commands
come from, or where the output goes.
Special operators allow you to re-arrange
the standard channels. You can use the
> operator, to avoid sending standard
output to the console:

hj@asteroid:~$ grep blah * U

> grep_results
grep: dir: Is a directory

Instead of the simple > operator, you
could type 1>. As previously men-
tioned, 1 is the file descriptor assigned to
standard output. If you omit the 1, stdout
is simply assumed as the default.
Although the results for this grep com-

mand are sent to a file called
grep_results, error messages continue to
appear on the console. If you prefer to
keep the standard output and redirect
the standard error output, try the 2>
operator instead:

hj@asteroid:~$ grep blah * U

2> grep_error
file1:blah
file2:blah blah

If you do not need a program’s error out-
put, you can redirect it to /dev/null
instead of into a file. This pseudo-file
does not have any content. Any data you
send to it is simply discarded. This
allows you to remove unwanted error
messages:

grep blah * 2> /dev/null

The > operator not only redirects, it also
creates the file needed to do so, or over-
writes an existing file with the specified
name. As an alternative to this, you can
type two greater than signs, >>. If the
target file does not exist, it is created.
Otherwise, the output is appended to the
file.

The >& operator allows you to redi-
rect standard output, and standard error
output to a single file:

For years, “Command Line” has reg-
ularly discussed shell commands,
letting you in on the techniques

needed to skillfully combine programs.
We have used redirection operators as a
matter of course in these discussions. In
this issue of “Command Line” we will be
investigating how these operators work
under the hood.

Three Channels
There are three standard channels for
program input and output. Active
progams expect input from standard
input, (stdin), that is, via the keyboard.
Programs send normal output to stan-
dard output, (stdout), which is typically
the terminal window in which you
launched the program. There is also a
standard error channel, (stderr) that typi-
cally goes to the same place. This is
where to look for error messages issued
by a command with notes on how to
resolve the problem. So-called file
descriptors are used to denote the three
channels. The standard channels are
simply enumerated: stdin being #0, std-
out #1, and stderr #2.

The normal program output appears in
the terminal window, that is, the prompt,
asking us if we really want to run the

84 July 2004 www.linux-magazine.com

Command LineLINUX USER

It is quite easy to redirect command line input and output, thus combining

commands. This month, we will be looking at the bash operators you need to

do this, and showing you how to use tee as an intermediary step.

BY HEIKE JURZIK

Channels, Pipes and Tee

Redirected

Although GUIs such as KDE or GNOME are
useful for various tasks, if you intend to get
the most out of your Linux machine, you will
need to revert to the good old command
line from time to time. Apart from that, you
will probably be confronted with various
scenarios where some working knowledge
will be extremely useful in finding your way
through the command line jungle.

Command Line

File descriptor: Under Linux, each process
including open files, has a unique positive
identifying number. Each number is also
referred to as the file descriptor.The descrip-
tors 0, 1, and 2 are generated automatically,
as every process is launched with the stan-
dard input, output, and error channels open.
See Example 1.

GLOSSARY

grep blah * >& grep_results

Input
Besides redirecting output, you can also
redirect input. You need the < operator
to do so. For example, a command does
not need to read input from the key-
board. It can also parse a file. This is
often quite useful for the mail command.
To send a text, which I have written pre-
viously, to the user petronella, I simply
enter:

mail -s "letter" U

petronella < lettertext

This command first sets the Subject of
the message, using the -s option. mail
then sends the lettertext file which it read
using the < operator.

Up the Down Pipe
We can use the pipe character (“|”) to
link up the input and output streams,
thus creating chains of commands. To
display the output of the ls -l /etc/* com-
mand in the less pager, type :

ls -l /etc/* | less

Without redirection, the output from the
ls command would simply scroll out of
the terminal window. It is also possible
to link up a whole series of pipes, as can
be seen in the next example, to pass out-
put through the commands:

hj@asteroid:~$ du ~ | U

sort -rn | less
15237932 /home/huhn
1598024 /home/huhn/digicam
1518428 /home/huhn/uni
1500236 /home/huhn/tmp
1246740 /home/huhn/uni/english
[...]

The du command first investigates all
the subdirectories in the user’s home
directory (shown as a tilde ~) to find
out how much space the files are occu-
pying. To discover which file is using the
most space, you can redirect the output
from the du command to the sort com-
mand. The parameters, -r and -n, ensure
that the output will appear in reverse
order, and sorted numerically. The sec-
ond pipe ensures that the output is
paged.

Tee Time
The tee tool is very useful in commands
that use complex pipelines. As the name
suggests, tee is a kind of t-junction that
connects two pipes. tee expects data
from standard input, which it passes
unchanged to standard output, while at
the same time copying the data to the
specified file. The generic syntax for tee
is as follows:

tee [-option] file
You can insert a t-junction into a pipe
between two commands. tee will accept

the output from the first command, redi-
recting it to a file, and to the next
command in the pipeline:

hj@asteroid:~$ who | tee U

loggedon.txt | grep huhn
huhn :0 Apr 29 13:45

Here, the who command first checks
who is logged on to the system. The grep
command checks for instances of the
word “huhn”. The tee command in the
middle ensures that the who output is
first sent to a file called loggedon.txt.

tee has two interesting options: -a
(“append”) allows you to append data to
an existing file. Without this option, tee
will simply overwrite the file each time it
is called. The -i option prevents tee from
quitting if interrupts ([Ctrl c]) occur in
the data stream.

tee is often used if multiple commands
occur in a pipeline. Saving the output in
temporary files can help troubleshoot
and debug complex command chains. Of
course, you can remove the tee junctions
as soon as you have everything working.
Logging the output of a command that
takes a long time to complete is another
useful application for tee:

tar cvf backup.tar *U
| tee backup.log

This command creates a logfile in addi-
tion to the tar archive, allowing you to
check the file at a later stage. Redirecting
the tar command, as in > backup.log,
would prevent any output specified by
the v from cluttering your terminal win-
dow. You could still use tail -f backup.log
to check on tar‘s progress in a separate
terminal window. ■

85www.linux-magazine.com July 2004

LINUX USERCommand Line

01 hj@asteroid:~$ /sbin/fsck /dev/hda7
02 Do you want to run this program?[N/Yes] : Yes
03 reiserfsck: Cannot not open filesystem on "/dev/hda7"
04 Warning... fsck.reiserfs for device /dev/hda7 exited with signal 6.

Example 1: Cooperating channels

Linux Lunacy ’04

7 Night Cruise • Departs October 10, 2004
Internationally-renowned authors & speakers

www.geekcruises.com

C R U I S E T H E E A S T E R N M E D I T E R R A N E A N

S P O N S O R E D B Y : L I N U X M A G A Z I N E

