
Applications that run on one node may
run on another the next time and need to
see the same data space. Secondly there
are classes of highly parallel applications
that need parallel access to the same
data from many nodes at the same time.
Therefore data needs to be available to
every cluster node and access to the data
has to follow the well known UNIX para-
digm through open(), read(), write() and
close() calls.

A cluster filesystem gives global
access, that means ‘visible at every
node’, as well as multiple simultaneous
access to on-line storage.

Blocks, files and connections
Files are written by the operating system
in chunks of a certain size called blocks.
This is tunable to a maximum of 4 KB.
The filesystem is created with a certain
block size. Consequently small changes
to a file are handled less efficiently on a
filesystem with 4 KB blocks size. Such a
layout is better in handling large sequen-

Most of the configuration, when
building a cluster, is similar to
what is done on a single

machine. Setting the IP address and
changing some startup environment are
basically the same on all Linux
machines. No specialized knowledge is
required. Besides the standard Linux
programs, some cluster specific software
is needed. One such program is responsi-
ble for handing out jobs and controlling
the workload. Another special software
package helps to install hundreds of
machines at the same time. Management
software to control or adapt a single
node or the whole cluster with a few
simple commands is another necessary
tool in a cluster.

This article is about the specialized
system software that is used in clusters
to write and read data. The software glue
between the cluster nodes is the cluster
filesystem. Highly optimized for the clus-
ter or large installation a cluster
filesystem is not found in ordinary stan-

Building a cluster with Linux is the

first idea when some older PIII nodes

are replaced on the desktop. The ease

of installation and the readily avail-

able software packages to build a

cluster computer has changed from

an art performed only in the largest

computation centers, into the com-

mon practice of everyday system

installation and administration.

BY JOS VAN WEZEL

Cluster Filesystems

Grand Designs

52 July 2004 www.linux-magazine.com

Cluster FilesystemsKNOW HOW

dard Linux distributions. The choice for
a certain cluster filesystem depends on
the file access pattern and the costs.

A filesystem is necessary
Clusters need background storage that is
available to every node. Programs in a
cluster usually work on partitioned work
areas and need to share data through a
common resource like a filesystem. For
programs running in a cluster it is most
convenient to use the filesystem inter-
face offered by the underlying operating
system. It is very difficult to build the
storage sharing into the application.
After all, the application has to run on
different installations, different Linux
versions or even different operating sys-
tems. Besides, it would severely limit
performance.

A filesystem to store data is normally
part of each operating system. Linux
computers in a cluster have ext, JFS,
ReiserFS or equivalent installed, but this
storage is confined to the single node.



tial IO. The kernel operates on blocks to
improve speed and does so also for the
IO subsystem. Disk drivers take care of
the block transfers from host to disk. The
filesystem takes care of the allocation
and administration of disk blocks.

Filesystem data access can be block
oriented or file oriented. There are solu-
tions that use and extend the local
storage and systems that implement the
actual block storage themselves. The
first method makes the implementation
and portability a lot easier, but limits
throughput. The other approach is to
handle the block storage in the cluster
filesystem. This allows optimization of
data access and the addition of features
for which normally a Logical Volume
Manager is responsible. The system is
also easier to manage because is has full
data control for the complete path from
disk to application.

To improve on throughput many solu-
tions offer the possibility to read and
write data in parallel to many disks. Files
are striped over several disk platters or
alternatively, individual files are written
to different disks. See Figure 1. The max-
imum IO throughput is limited by the
disk transfer speed capacity and can only
increase when more disks are accessed
in parallel.

To access the local disks on other clus-
ter nodes, an individual node can use the
network connection. An IP/Ethernet link
is already available to connect to the out-
side world. Sometimes a secondary
Ethernet connection is used solely for
the filesystem originated data transfers.
For Linux the Enhanced Network Block
Device (http://www.it.uc3m.es/~ptb/

nbd) allows to attach a
disk over the network.
Ethernet is not optimal
for block oriented IO and
many filesystems sup-
port the use of additional
inter node connecting
hardware to demonstrate
their superior through-
put. The difference in
speed is also reflected in
the costs for intercon-
nect hardware. Examples
of also called memory
attached hardware are
Myrinet, Infiniband or
Fibre Channel. It is

cheaper to run piggy back on Ethernet.

Metadata
A Linux filesystem stores data in files
and directories and keeps record about
these in i-nodes. The i-nodes contain,
among other things, information about
the stored files. Examples are the size,
creation time, type or the owner of a file.
This information is called meta-data.
Manipulations to the meta-data can be
handled separately from the actual data
input and output. This makes it possible
to offload the meta-data handling to a
dedicated meta-data server. In cluster
filesystems the separate meta-data
servers are usually also responsible for
write locks on a file.

Separation is used to improve through-
put. Read operations do not need the
meta-data after the location and access
rights of the actual data are established.

The system then directs the IO transfers
to dedicated IO server. An IO server with
high speed connections can deliver the
actual data to the application more effi-
ciently and the meta-data server can
continue with other tasks. Because meta-
data is much smaller then the actual data
it can be completely cached. As the
working set in a cluster can become very
large, file server caches are never large
enough to store all active IO data.

Network Attached Storage
Well known types of cluster filesystems
are network filesystems such as NFS or
SMB. NFS is used in many installations
to connect to Network Attached Storage
(NAS) servers. See Figure 2. 

High throughput rates are achieved on
specialized NAS servers like those by
NetApp Exanet, Panasas or Zambeel.
These are proprietary, but highly opti-
mized NFS solutions, with their own
operating system. With Linux one can
take a dual CPU, a RAID controller on a
PCI card, 1 GB Ethernet interface, if not
on-board already, put in some EIDE
disks, install Linux as NFS server and
your NAS box is ready.

NAS as a cluster filesystem has its
drawbacks. Throughput for small files
and non sequential access is slow
because of the high latency since all the
data has to transfer through the
Server/TCP/IP stacks. Linux also has
limited storage capacity because of the
32 bit size block pointers although with
the 2.6 kernel this scales to 16 TB. The
scalability of the self constructed net-

53www.linux-magazine.com July 2004

KNOW HOWCluster Filesystems

Figure 1: Striped filesystem.

Figure 2: Network attached storage. Figure 3: Direct attached storage.



tem solutions for Linux. Not all solutions
are designed for use in a cluster, but they
are very capable to do so.

NFS
NFS is a network based, file oriented
filesystem. Because NFS, when run over
UDP, is stateless, clients experience only
a short stall if the network is unavailable
or if a NFS server is rebooted. Clients
may disappear without notice and the
server does not have to do anything to
recover. This is in contrast with all other
mentioned systems below that do need
to clean up after (contact to) a client or
cluster member is lost.

Directory hierarchies local to the
server are made available to others by
exporting them. Clients mount the
exported directories on any location in
their own filesystem. A client cannot
export a mounted NFS filesystem. As
NFS uses a weak security model this
makes it impossible to safely share over
WAN.

Exported filesystems are usually main-
tained in a database. The database can
be NIS or LDAP. The autofs system, uses
this database to automatically mount the
proper file hierarchy. The trigger for the
automated mount is a program entering
the directory which is defined as mount
point. NFS mounts within NFS mounts
are allowed.

The combination with autofs and the
network wide database makes NFS a
very good candidate for use in a cluster.
Perhaps the only limitation is its speed,
but this depends heavily on the access
pattern.

OpenAFOpenAFSS
This is both a network and a distributed
filesystem. It offers file sharing, even
over a WAN, and a global name space.
The filesystem is completely virtual and
kept on (replicated) data servers and
metadata servers. Clients build up a
cache of recently used files which is reg-
ularly flushed to the data servers.
Applications use the cached data and
continue to work when the connection
to the data server is broken but have to
wait on close of the open file until the
server is on line again.

AFS has been branched into the Dis-
tributed File System (DFS) which was
maintained and marketed by an IBM
subsidiary. DFS is no longer supported
and development has stopped. It is an
excellent shared filesystem for a campus
or even world wide because it also has a
well established security model. An
instance or administrative domain is
called a cell. Users authenticate them-
selves and are sent a security token with
a limited lifetime. The token allows the
cache manager on the local machine to
talk to the AFS file server.

With OpenAFS an administrator can
add disk space and replace disk space
without service interruption. Because
the cache manager sits between user and
server, data migration to other servers
can happen transparently. A special
version of OpenAFS called MultiResi-
dent-AFS interfaces to tape and allows
automatic data migration to offline
storage.

Use of OpenAFS in a cluster is not rec-
ommended for high data throughput.

The benefit of a cache, which may
enhance stability, is obviated by
the slow file server access which
runs in user space.

GPFS
The General Parallel File System is
a commercial product of IBM.
GPFS is a truly parallel filesystem.
Data can be striped over many
disks and any node can access the
same file at the same time.

There are two possible access
configurations, either via SAN or
via direct attached storage. In the
SAN configuration each node sees
each block on all storage elements
that are made available to the

work attached filesystem ends at the sin-
gle network connection. Even a modern
Gigabit link does not suffice to deliver IO
for more than a few cluster nodes. A pos-
sible solution is Ethernet bonding, which
combines two or more devices to
increase bandwidth.

Depending on the requirements regar-
ding throughput, costs and to a lesser
extend security, a network attached stor-
age system can function as cluster
filesystem.

Direct attached storage
Usually these disks are located next to
the computer in the same housing or in
near vicinity. Therefore this is called
direct attached storage as opposed to
network attached. See Figure 3. The dis-
tance is limited by the specifications of
the copper based connections. Fibre
Channel has opened the possibility to
connect disks at larger distance. FC can
connect hosts to storage devices directly
or via a FC switch. Switches can connect
to switches to build a storage network or
SAN. See Figure 4.

Where SCSI or ATA is limited to con-
nections between host and storage, Fibre
Channel is used to build a storage area
network or SAN that connects hundreds
of hosts and storage devices. The Fibre
Channel protocol is optimized for stor-
age devices. Features are the low latency
and protocol offloading which reduces
the interrupt and processing load on the
host.

Network attached direct
storage
Storage and networking are
increasingly integrating on the
hardware side. iSCSI is a standard
that defines the SCSI protocol over
IP. Conversely there is FC-IP,
which defines IP over Fibre Chan-
nel. Infiniband offers both IP and
FC, on the same connection hard-
ware. Modern high reliability
makes a Local Area Network a
good IO candidate for block trans-
fers which are usually handled by
direct attached storage.

Well known cluster
filesystems
We will limit ourselves to some of
the most interesting cluster filesys-

54 July 2004 www.linux-magazine.com

Cluster FilesystemsKNOW HOW

Figure 4: Storage area network storage.



dling: a file is found by asking the MDS.
After opening, the MDS relays the actual
the IO to Object Storage Targets (OST) to
takes care of the data exchange. The
MDS keeps track of the data exchange in
a journal. Creating and writing a file
involves the creation of an i-node on the
MDS which then contacts an OST to allo-
cate storage. The allocation can be
striped across several OSTs to enhance
performance.

Throughput achieved in some pub-
lished tests is impressive. At the
moment, Lustre still lacks important
maintenance tools to use it in a produc-
tion environment. There is no filesystem
recovery utility and there is not yet an
automatic failover for the single MDS.
The original approach and the develop-
ment from the ground up makes Lustre a
solution that could develop into a very
powerful and elegant system.

PVFS
The Parallel Virtual File system is block
based and provides high performance for
I/O intensive parallel or distributed
applications. The usual application envi-
ronment is a small (< 50 nodes) cluster
but there are no inherent limits. Parts of
the internal disk are made available to
PVFS on IO nodes. 

The file space of these disks is then
distributed to the complete cluster and
accessed via Ethernet a kernel module
and the libpvfs lib installed on the
clients. Clients can be IO nodes (IOD)
themselves and one node or client has to
be configured as the meta-data node
(MDS).

Files are striped over the IO nodes.
After the initial administrative data
exchange with the MDS all data traffic
with the IODs is handled by the clients
individually via the libpvfs. The library
orchestrates the assembly of the files
from the stripes distributed over the
IODs. PVFS supports Myrinet and Infini-
band for intra-node communication.

PVFS currently contains neither means
for data redundancy nor is it possible to
recover from a failed node. There is a
potential bottleneck at the manager level
as the number of client nodes increases.
PVFS cannot go beyond the restrictions
introduced by TCP/IP on Linux, such as
limits on the number of simultaneous
open system sockets and TCP/IP proto-

col overhead. PVFS must be installed on
the cluster nodes since it does not allow
export via NFS or AFS.

PVFS2 is a code rewrite based on the
experiences gathered with PVFS1. It has
structural enhancements such as user
controlled striping and distributed meta-
data. This allows the installation of more
then one meta-data controllers which
relieves this bottleneck.

OpenGFS
OpenGFS or OGFS also implements a
journaled block based filesystem that
provides read and write access from mul-
tiple nodes. The dreaded ‘pool’ code was
changed to allow OGFS to use any logical
volume manager. ELVM is preferred.
Most recently the memexp locking was
replaced by the OpenDLM module. The
old memexp was a single point of failure
and very compute intensive. OGFS sup-
ports growing of filesystems and the
addition of disks (through the separate
LVM). Node failures are handled by log
recovery and isolating the failed node.

Final remarks
None of the presented systems are ideal.
None of the discussed variants of cluster
capable filesystems is perfect for all pur-
poses. The open source packages
LUSTRE und OpenGFS are in their early
development and not production ready.
OpenAFS lacks throughput capacity.
Clearly the Linux and open source com-
munity still have some time to go in
developing stable, scalable cluster stor-
age. The commercial software GPFS or
Sistinas GFS are reportedly more stable
and scalable.

After you have made your choice it is
not possible to run rpm -i and forget
about it. The software has to be tuned
for the specific environment. The default
values are never the optimal values.
Proper configuration forces you to think
about data access patterns, optimal IO
paths, possible bottlenecks, block sizes,
strip sizes, cache usage etc. After instal-
lation of the cluster filesystem the fun
just starts. ■

GPFS. Files are assembled from the
blocks distributed in the SAN and are
directly available on the node. The direct
attached configuration relies on a high
speed inter-node network which can be
Ethernet or Myrinet. Blocks from local
disks are shipped to other nodes. Files
are assembled by gathering blocks over
the IP network from local disks on sev-
eral nodes. It is the similar to PVFS.

Management is very simple. Com-
mands can be issued from any node. The
system has the capability of adding and
removing disks, rebalance data access,
change the block size and the number of
possible I-nodes. It overcomes the maxi-
mum filesystem size limitation because
it allows a configurable block size as
large as 1 MB.

There is one node per open file for
handling the metadata. All nodes can
access the same file, but changes to the
meta-data are handled by the meta-data
node. The locking is distributed over the
nodes accessing the file. All data is writ-
ten and read in parallel and throughput
scales linearly with the number of disks
and nodes. GPFS filesystems can be can
be exported with AFS or NFS from dedi-
cated servers. The compute nodes then
mount the exported filesystems.

GPFS depends on very expensive SAN
infrastructure to achieve a high perfor-
mance. The configuration where an IP
network is used to assemble disk stripes
can become an early bottleneck for
many data access patterns.

LUSTRE
LUSTRE is a new and being actively
developed. Although Lustre is marketed
by HP, the project is committed to the
open source license model. Lustre has
excellent documentation. For configura-
tion and logging Lustre relies on the
open standards LDAP and XML. Lustre is
a file (object) based system.

Everything stored in Lustre is consid-
ered an object. The objects of the
filesystem are (special) files and directo-
ries. The attributes, meta-data, of these
objects such as size, creation time, sym-
bolic link pointers or backup flags are
stored on metadata servers (MDS). The
meta-data is kept separate from the
actual content. The MDS takes care of
file creation, attribute manipulation and
is responsible for the namespace han-

56 July 2004 www.linux-magazine.com

Cluster FilesystemsKNOW HOW

[1] OpenGFS: http://www.sourceforge.net/
projects/opengfs

[2] GFS: http://www.sistina.com

INFO




