
Make and make install errors are
strange things; they should not
really exist. The actions that

the make program performs while com-
piling and installing a software program
are laid down in the Makefile, as created
by the configure script. If configure dis-
covers that a required library is located
in the /usr/local/multimedia/lib direc-
tory, this information will be stored in
the Makefile as a compiler parameter.

Superficial Checks
The file should suit your system perfectly
and make should run like a dream. If
that does not happen, the source code
for the program may be buggy. In this
worst case scenario, you need some help
from the developer.

However, you may be able to handle
some issues yourself, such as problems
with messy configure scripts that do not
fulfill all the requirements for a success-

ful make operation (see Listing 1).
If something goes wrong at the make

stage, the program will typically issue
several dozen error messages. The first
message is the most important; all the
others may result from it. In Listing 1
make fails because the compiler is
unable to locate mimepp.h. This error
occurs while make is compiling a file
called decodeRFC2047.cpp. The error
occurs in line 21.

If the error message is obvious, as
in mimelib/mimepp.h: No such file or
directory, there is no need to investigate
the source code. Simply use urpmf
mimepp.h (Mandrake Linux), pin
mimepp.h (Suse Linux), or a file search
at http://www.rpmseek.com/, to locate
the package with the missing file.

Mandrake Linux returns kdenetwork-
devel as a result of the search. After
installing the package, launch make
again. This time, gcc should have no

trouble finding mimepp.h, and make will
not fail.

On rare occasions make may overlook
a file, despite it being on your machine.

Absent-Minded Developers
If you feel confident enough to add some-
thing to the source code, you can easily
remove errors like the one in Listing 2.
Simply dissect the cryptic looking mes-
sages piece by piece. The compiler is just
compiling legacyimport.cpp, as indicated
at the beginning of each line. Line 143
refers to KInputDialog, but the compiler
has no idea what this is (undeclared (first
use this function)). Undeclared means
that the KInputDialog class, which is
being used in a function for the first time
here, has not been defined anywhere that
the compiler might be able to look. This
means that a code segment required to
build the program, or to be more precise,
the statements for creating a window
with a text entry line and an OK button,
are missing.

Programmers use reusable classes to
avoid rewriting the code needed to create
objects of this complexity from scratch
each time. If you need an object belong-
ing to this class, you can simply call the
constructor.

After successfully completing the configure script, users only need to negoti-

ate the make and make install steps to build a new application. Although this

sounds simple, the details can be a little tricky, when things first appear to go

wrong with the make command. We guide you through the steps you need to

complete, in order to successfully build an application.

BY ANDREA MÜLLER

What to do when make won’t play ball.

Hand-Built

33www.linux-magazine.com July 2004

COVER STORYMake

Makefile: This ruleset file contains all the
commands and details required to build a
program, for example the location of libraries
and include files, the compiler commands,
and the copying commands that move the
finished application to the target directory.

GLOSSARY

01 [andi@doomtrain kshowmail-3.1.0-pre1]$ make
02 [...]
03 decodeRFC2047.cpp:21:28: mimelib/mimepp.h: No such file or directory
04 decodeRFC2047.cpp: In function `QCString decodeQuotedPrintable(const

QCString&)':
05 decodeRFC2047.cpp:40: error: `DwString' undeclared (first use this

function)
06 [...]
07 make[2]: *** [decodeRFC2047.o] Error 1
08 make[2]: Leaving directory `/home/andi/test/kshowmail-3.1.0-

pre1/kshowmail'
09 make[1]: *** [all-recursive] Error 1
10 make[1]: Leaving directory `/home/andi/test/kshowmail-3.1.0-pre1'
11 make: *** [all] Error2

Listing 1: A missing check in the script

missing file in Listing
2, the programmer
has probably just for-
gotten to include the
file which contains
the class. To resolve
this error, you first
need to locate the
file.

The grep com-
mand is useful for
finding strings in
files. Start off in the

source code directory, or the src directory
below it. grep KInputDialog *.h will
search for the KInputDialog string in files
with the .h suffix. This does not work in
our example, as KInputDialog is a
generic KDE class located in one of the
system’s include directories. These are
typically /usr/include, and /usr
/local/include, although KDE some-
times has /opt/kde3/include.

grep -r KInputDialog /usr/U
local/include/*

(-r for recursive) returns two matches on
our lab system: kinputdialog.h, and kli-
needitdlg.h. The matching entry in the
second file is just a comment, but the
lines in kinputdialog.h look compli-
cated enough to be a class. See Box 1:
kinputdialog.h.

Also, the filename reminds you of a
class, and that is a good sign, although it
is in small letters. To find out if we
guessed right, we can add the legacyim-

port.cpp below the other include lines
(see Figure 1).

#include <kinputdialog.h>

Note that make no longer complains.
This method will only work if the
include file containing the required defi-
nition is located on your system.

Installation with Obstacles
There are very few occasions where
make install returns an error, and most of
them occur when users attempt to install
a program in a directory other than
/usr/local. If you want to place an appli-
cation in /usr/local/test, this may fail if
the programmer forgets to add the lines
required to create the target directory for
the file copy operation to the makefile. If
/usr/local/test/bin does not exist, any
attempt to copy a file to that directory is
doomed to failure. The easiest way to
remove an error of this kind is to use
mkdir to create the target directories,
whose names should be visible in the
error messages.

Post-Install Blues
After building a new KDE application,
you may still be in for a disappointment
when you attempt to launch it. The pro-
gram might not be able to locate
its plug-ins, or it may have an empty
tool bar, or talk to you in the wrong
language (see Figure 2). By default, KDE
applications only search for files in
the directories where the KDE core
applications and their cohorts reside. On
Suse Linux, the KDE directory is
/opt/kde3, whereas Red Hat and Man-
drake Linux opt for /usr. If you build
a KDE application, the icons, plug-ins
and help files will be placed in
/usr/local, however.

In Web forums, unsuspecting seekers
are often told to re-compile the applica-
tion, and this time specify the KDE
directory as the install target when call-
ing ./configure, e.g. ./configure --prefix=
/opt/kde3.

Although the application may run if
you follow this advice, the answer is
anything but perfect; in fact, it can be
downright dangerous. /opt/kde3 on
Suse, and the /usr directory on Red Hat
and Mandrake Linux are reserved for the
package manager. Self-built programs

Classes are program interfaces; C and
C++ programs thus tend to place them
in the header files of dev(el) packages,
which typically end in an .h suffix. To
allow the programs involved in compil-
ing the source code to use the library
functions, the developer adds include
lines to the sources:

#include <kmessagebox.h>

tells the compiler to add the code stored
in the kmessagebox.h file in one of the
include directories. Include directories
are passed to the compiler as makefile
options, as in -I/here/are/the/includes.
However, if the line states

#include "myinclude.h"

instead, that is, if the angled brackets are
missing, the compiler expects the myin-
clude.h header in the same directory as
the file it is compiling.

As you do not see a message about a

34 July 2004 www.linux-magazine.com

MakeCOVER STORY

Figure 1: Adding an include line to “legacyimport.cpp”.

01 [andi@doomtrain]$ make
02 [...]
03 legacyimport.cpp: In member function `void

KLegacyImport::finished()':
04 legacyimport.cpp:143: `KInputDialog' undeclared (first use this

function)
05 legacyimport.cpp:143: (Each undeclared identifier is reported only

once for each
06 function it appears in.)
07 legacyimport.cpp:143: parse error before `::' token
08 make: *** [legacyimport.o] Error 1

Listing 2: A missing include line.

01 /usr/local/include/kinputdialog.h:class KInputDialog : public
KDialogBase

02 /usr/local/include/kinputdialog.h: KInputDialog(const QString
&caption, const QString &label,

Box 1: kinputdialog.h

have no right to be there, as the package
manager will not be able to remove
them. The next time you update your
distro, or KDE, these files can lead to an
instable KDE. The self-built application
may be long forgotten by this time, and
even if you do remember, there is little
chance of finding the culprit.

The correct approach is to tell your
KDE programs that there is another data

directory. You can use the
KDEDIRS environment vari-
able to do so:

export KDEDIRS=/usr/U
local:/opt/kde3

points at both the Suse Linux
directories: /usr/local, for self-
compiled software, and
/opt/kde3 for KDE distribu-
tion components. The
command for Red Hat and
Mandrake Linux is export
KDEDIRS=/usr/local:/usr.

Assuming that you have
tuned your command line

window in this way, KDE applications
will look for data below /usr/local in
future. If you want to set this environ-
ment variable permanently, .bash_profile
in your /home directory is the right place
to do so. Any commands you add to this
file, are launched by bash when you log
on to the system.

Suse Linux users have a bit more work
to do, as the

unset KDEDIRS

command is called by /opt/kde3/bin/
startkde. This is the shell script that
launches the KDE desktop. unset deletes
the contents of the environment variable
and is thus overrides the export. As the
~/.bash_profile script runs before the
desktop is launched, KDE will never
know that there is another data directory.

To set the variable on Suse Linux,
make sure that you are root, open
/opt/kde3/bin/startkde in your editor,
and comment out (#) the line with unset
KDEDIRS, to tell the shell not to run the
rest of this line. You can easily remove
the hash sign at a later stage. ■

COVER STORYMake

Figure 2: If you install K3b to “/usr/local” it will be unable to
find its icons and plug-ins.

High Performance

64-bit Linux Clusters

At DNUK we can build a complete Linux computational

cluster for you. When you purchase a group of

rackmount servers from us we will build, configure and

test your cluster for you at no extra charge.

 Choose from 32-bit

Intel Xeon or 64-bit AMD

Opteron nodes and a

variety of open source

libraries including MPICH

and LAM/MPI.

 A range of hardware

interconnects including Gigabit, Dolphin SCI and

Myricom Myrinet are available.

 For details on the clusters we can build, visit:

https://secure.dnuk.com/store/clustering.php

Visit www.dnuk.com and find out why corporate

customers, small and medium businesses and most

UK universities choose us for their IT requirements.

www.dnuk.com

sales@dnuk.com

0161 337 8555

Best system builder

After nearly two-years
as an independent jour-
nalist, Andrea Mueller
works as a new editor
for the Linux New
Media AG.
When she is not taking
care of articles , she looks beyond
Linux and is involved with other oper-
ating systems like QNX and BeOS.

TH
E

AU
TH

O
R

