
The corresponding import function,
load data infile, offers similar perfor-
mance. You can use this option to load a
file that you previously stored with the
select into outfile approach. load data
infile expects the filename of the file to
be parsed as a parameter:

load data info 'File' [replaceU
| ignore] into table Table

What this basically does is to load the
contents of the file into a table with the
specified name. If you want to use the
combination of select into outfile and
load data info to back up your tables,
you need to make sure that the target
table is empty before you load data. As
an alternative, you can specify the ignore
parameter. It will drop lines with double
primary keys, preventing errors if the tar-
get table already contains the same data.

There is a downside to select
into outfile and load data infile.
You can only load or save whole
tables. This means having to mod-
ify your backup scripts each time
you create a table to ensure that
you backup the new table. If you

need to back up a single table, select into
outfile is a perfect solution.

Option 2: Backup Table
Backup Table works in a similar way to
select into outfile. Users can formulate a
SQL statement with the backup source.
The backup table options expects one or
more tables, and the name of the target
file for the tables, as parameters: backup
table Table1 [,MoreTables] to ‘File’. This
allows users to backup multiple tables
simultaneously, using a comma-sepa-
rated list of table names.

The MySQL documentation states that
backup table is obsolete and that the
developers are working on a new vari-
ant. You can ignore this statement, as the
option works really well. The big advan-
tage it provides in comparison to select
into outfile is that you can save multiple
tables with a single command. On the
downside, you will need shell access to
the MySQL server.

Option 3: Mysqldump
Mysqldump really takes the work out of
creating backup copies. The program can
save a complete database, or even multi-

MySQL databases can store all
kinds of data, from goods for
sale to details of your next

advertising campaign. All this data needs
to be backed up regularly. MySQL [1]
has a wide range of backup facilities
which are suitable for various applica-
tions. Users can choose between quick
and extremely safe methods.

Option 1: Select into outfile
If your database consists of just a few
tables, and you have shell access to the
MySQL server, select into outfile is the
simplest way of backing up. You can use
this to quickly write a table, or part of a
table, out to a file. Use the power of the
select statement to restrict the selection
of files to backup. To save a whole table,
simply enter select *. Listing 1 provides
an overview of select into outfile options.

File stands for the filename that you
will be saving in the table. The fields ter-
minated by option specifies the column
separating character in the file. This typi-
cally defaults to a comma. Note that the
output file cannot already exist. The
account that runs select into outfile on
MySQL has to have file permissions for
the MySQL server machine. The advan-
tage of this approach is the speed.

The popular Open Source database,

MySQL, offers various backup meth-

ods. Each of them has advantages

and disadvantages that can be criti-

cal in certain circumstances.

BY THOMAS WÖLFER

Backing up MySQL databases – Part 1

Safe and Secure

58 July 2004 www.linux-magazine.com

MySQL BackupSYSADMIN

Gerd W
aloszek,w

w
w

.visipix.com

01 select * into outfile 'File.txt'
02 fields terminated by ','
03 enclosed by '"'
04 lines terminated by 'n' from Table;

Listing 1: Select into outfile

ple databases. You do not need a shell
account on the MySQL server machine to
do this. The port needs to be accessible
to MySQL, otherwise mysqldump will be
unable to connect to the server. The
mysqldump command is as follows:

mysqldump [options] database U

[tables]

where [tables] means a list of all the
tables in the database that you need to
back up. To back up all the tables in the
database, omit this parameter. This com-
mand will simply display a mass of data
on your screen. To write the database to
a file, redirect the output into a file.
Again, the file must not already exist:

mysqldump database > backup.sql

The backup copy backup.sql includes
both the table structure and the corre-
sponding data. To load both sets of
information from the backup copy, enter:

mysql < backup.sql

If you do not have local access to the
MySQL server, admins can tell mysql-
dump to retrieve the backup data from a
remote server. The program needs the -
host=RemoteHost option. Be aware that
this will generate a lot of traffic. This
is the biggest obstacle to performing
mysqldump backups across a network.

For a local backup, the program is the
perfect tool. Mysqldump has a range of
options (see Figure 1). For a complete
list of command-line flags, check out the
MySQL documentation at [2].

Option 4: Manual Backup
If halting the MySQL server for the time
it takes to create a backup is one of your

options, you can apply an extremely sim-
ple backup method. First, stop the
MySQL daemon, then copy the database
files, and relaunch the daemon. For this
to work, you need to copy all the FRM,
MYD, and MYI files from the database
directory. To restore the data: stop the
daemon, copy the database files back,
relaunch the server.

Of course, a simple backup of this type
has its restrictions. Stopping the MySQL
daemon might be an option for smaller
databases, websites with low traffic
levels, or Intranet sites with defined
maintenance windows, but large public
sites need to be up 24x7 and will defi-
nitely not have the option.

Again, the administrator needs shell
access to the database server, so manual
backups are not an option for small-scale
Web hosting scenarios. If you have shell
access, a manual copy is a simple and
reliable backup solution. Perl program-
mers have put together a convenient Perl
script called mysqlhotcopy [2].

If running Perl scripts on your server is
one of your options, mysqlhotcopy is one
approach to automating the manual
backup process. Again, there is a restric-
tion: the script only works with ISAM
and MyISAM databases.

Option 5: PHP Scripts
You can use a scripting language such as
PHP to customize MySQL data backups
to reflect your own requirements. The
following PHP approach is simple, pro-
viding a basic framework on which you
can build your own backup script. The
full script is available as a download
from [3]. A general-purpose solution for
transferring data between two MySQL
databases is conceivable, such as an
extension to PHP MyAdmin [4].

The script expects you to have two
MySQL servers up and running. One of
the machines also needs to run Apache
with PHP support enabled. You also
need to install MySQL support for PHP.
This is installed by default by the PHP
distribution. The backup machine also
needs access to the MySQL ports.
MySQL typically listens on ports 3306
and 6000 for UDP and TCP.

The way your data are organized on
the server is critical to creating a useful
backup. If you continually need to mod-
ify data, you will need to backup more
data than if new records were simply
added from time to time. In the first case,
you need to store both new data that
have been added since your last backup,
and any records that have been modified
in this time. In the second case, it is
quite sufficient to back up the new
records. If you intend to use a browser or
WGET to launch the script, you need to
create a normal PHP page with the
instructions required for HTML:

<html><head></head><body>
<?php Update(); ?>
</body></html>

A minimal HTML page where the PHP
statement calls the update function is all
you need. In turn, this function will
launch all the other update functions one
after another. We will be looking at an
update function for an incremental
update, that is an update that only backs
up new records, in the following sec-
tions:

function UpdateNew()
{
print "Begin Update New
";

The function starts by outputting a short
message. This is practical if you use a

59www.linux-magazine.com July 2004

SYSADMINMySQL Backup

01 $cL = mysql_connect(
"Local_Server",
"Write_Username", "Password");

02 if(! $cL)
03 {
04 print 'no local

connection.';
05 return;
06 }

Listing 2: Connecting to
the local machine

01 $qs = "select id from Table
order by id desc limit 1";

02 $rLocal = mysql_db_query(
"Datebase", $qs, $cL);

03 if(! $rLocal)
04 {
05 print "query error: $qs

";
06 return;
07 }

Listing 3: Selecting IDs
01 $qsr = "select * from Table

where id>$num order by id";
02 $rRemote = mysql_db_query(

"Database", $qsr, $cR);
03 if(! $rRemote)
04 {
05 print "query error: $qsr

";
06 return;
07 }

Listing 4: Querying a
remote server

error handling (see Listing 2). The local
machine will be storing the data copy.
We need to supply the hostname or IP
address, along with the user’s creden-
tials in the script. This time, we also
need a user account with write privi-
leges.

Finding New Records
After setting up both connections to the
database servers, we get to the hardest
part. As the first sample script only
copies new records, it needs to find out
which records are in fact new. The script
uses the serial number, or a unique ID
for the line within the table. It assumes
that the highest ID is assigned to the
highest numbered record (see Listing 3).

In our example, the SQL query first
checks for the highest ID in the table.
Users only need to modify the placehold-
ers Table and Database to reflect their
environment, where Table refers to the
table within the database, and Database
to the name of the database we will be
accessing on the MySQL server. Again,
error handling is useful for this query to
ensure that the query actually provokes
(or even can provoke) a response. If a
response is forthcoming, the script out-
puts the query string. This allows you to
use your browser to check where this
specific query has caused a problem:

$row = mysql_fetch_rowU
($rLocal);
$num = $row[0];

Now we need to parse the number the
query returns. PHP has many functions,
but as we are interested in a single value,
mysql_fetch_row() will do the job per-
fectly. The number is located in the first
slot of the returned array, index [0]. This
tells us the highest local record number.
We can then perform a similar query on
the remote server (see Listing 4).

In the case of the second query, we are
only interested in numbers larger than
the one we have already found. The
query has been modified slightly to
reflect this. The condition is formulated
as a where statement. The returned num-
ber is stored in the results of the query
which PHP can again parse:

$count = mysql_num_rowsU
($rRemote);

This tells us how many records we need
to copy. The next step copies the data
(see Listing 5). The step is repeated as
often as needed to create a complete
copy of the new records. The script calls
mysql _fetch_row() for each new record.
The data are stored in an array.

After creating the copy, we need to
insert the data into the table, and replace
the Table placeholder with the name of
our table. Instead of Fields we will use a
comma-separated list of fields. The val-
ues to insert are $row[0], $row[1] and so
on. Finally, we will submit a query with
the query string that the process so far
has created. This will take care of actu-
ally inserting the data into the table.

Full Update
There are no major differences between
the script for a full update, and the script
we just looked at:

$strDel = "delete from Table";
$r = mysql_db_query("Database",U
$strDel, $cL);

We need to ensure that the table we
want to copy has been reset on the target
machine. This means we have an empty
table, and can use an insert into state-
ment to write the new data. We can use
delete from to empty the table. It is very
important to delete the right table from
the right database before running the
script. The script then selects all the data
from the source table and insert it into
the target table (see Listing 6). ■

browser to call the update, as it allows
the user to see what stage the update has
gotten to:

$cR = mysql_connect("Remote_U
Server¯,"Read_Username", U

"Password");

We now want the script to open up a
connection to the remote database server
(the remote server is the main server
where the source data for our backup are
stored). We supply the name or IP
address for the Remote_Server. Normally,
machines of this kind, or the MySQL
servers on these machines, are config-
ured to support multiple usernames and
passwords for read and write access. The
script needs read access and supplies the
credentials for an account with read
access along with the matching pass-
word (Read_Username, Password) when
opening up the connection:

if(! $cR)
{
print 'No remote connection';
return;

}

As it is common for a connection to fail,
the script first checks the return value for
the connect function. If the connection
has failed, the script terminates at this
point.

The next step is to open up the con-
nection to the local machine, again with

60 July 2004 www.linux-magazine.com

MySQL BackupSYSADMIN

[1] MySQL: http://www.mysql.com

[2] Mysqldump: http://www.mysql.com/doc/
en/mysqldump.html

[3] PHP script: http://www.linux-magazine.
com/Magazine/Downloads/44/MySQL

[4] PHP MyAdmin:
http://www.phpmyadmin.net

INFO

01 for($i=0; $i<$count; $i++)
02 {
03 print "Updating: $i ...

 ";
04 $row = mysql_fetch_row(

$rRemote);
05 $qsLocal = "insert into

Table(Fields) values(Values)";
06 $rLocal =

mysql_db_query("Database",
$qsLocal, $cL);
07 if(! $rLocal)
08 {
09 print "query error:

$qsLocal
";
10 return;
11 }
12 }

Listing 5: Copying records

01 $qs = "select * from Table";
02 $r =

mysql_db_query("Database",
$qs, $cR);

03 $num = mysql_num_rows($r);
04 for($i=0; $i<$num; $i++)

Listing 6: Inserting data
into the target table

