
different compilers behave differently
with respect to command line options,
the code they create, data emission, inte-
grated functions (so-called intrinsics),
assembler sequences, and anything
beyond the scope of the ANSI/ISO C
standard. It is only natural that replacing
the GCC will necessitate various kernel
source code modifications.

At this time of writing (using the Intel
Compiler 8.0, patch level 055), a few
modifications to the sources (of kernel
2.6.5) are insufficient to allow a clean
build using ICC. The patch we will be
looking at (available from [3]) uses two
utility programs to do the job: ccd (C
Compiler Delegate), and lkd (Linker Del-
egate). Instead of calling the Intel C
Compiler or the linker directly, we will
be using these tools as intermediate
helpers.

Both tools handle some quite sophisti-
cated modifications and thus resolve the
compiler incompatibilities. C Compiler
Delegate first uses the Intel compiler to
translate the source into Assembler code,
before going on to do some post-process-
ing, which we will be looking at in detail
in the following sections. Following this,
ccd tells the GNU Assembler to create
object code from the modified Assembler
code. The Linker Delegate works in a
similar way, using the GNU Linker.

Linux kernels built in this way are
quite stable on single and multiple CPU
machines with Pentium III and Pentium
4 CPUs. This makes all the effort worth-
while, both as an interesting technical
exercise, and in order to leverage the per-
formance advantage and thus avoid
spending money on new hardware. Cau-

tion is still advised: the ICC-built kernel
is still officially a developer version, and
admins should perform long-term tests
before moving their production systems
to the new kernel.

Steps to Building the Kernel
There are three steps to migrating your
compiler: first configure the kernel to
reflect your current hardware, use GCC
to build the kernel, and check whether
the kernel works. Make sure that any
kernel modules with experimental status
run well (see Figures 1 and 2).

The second step is to generally modify
the source code to allow the Intel com-
piler to process the source without any
errors (see the “Installing ICC” box).
Clean is relative with the Intel compiler:
if you keep the default warning level, -
Wall, the compiler is more pedantic than
GCC and will print a flood of warnings
about missing type conversions, and
pointer arithmetic on void and function
pointers on your console. The kernel
patch uses the -w flag instead, to output
only genuine compiler errors.

Unfortunately, ICC creates faulty
object code for some parts of the kernel.
You need to find and resolve these errors
to complete phase two. The third and
last step involves Intel-specific modifica-
tions that use two special characteristics
of the Intel compiler: IPO (Inter Proce-
dural Optimization) and PGO (Profile
Guided Optimization). PGO instrumen-
talization of the kernel code is
technically challenging, but worthwhile.

As far as I can tell, based on my own
experiments, there is one characteristic
of modern CPUs that cannot be

ICC, the Intel C/C++ Compiler, is
finally a competitor to GCC, worthy
of mention. It supports modern

processors, including the Pentium 4 and
AMD CPUs with similar performance
characteristics.

It only seems logical to use the Intel
compiler to build the Linux kernel.
Although the performance boost may be
minimal in comparison to the improve-
ments achieved with applications or
libraries, the kernel mainly arbitrates
between the hardware and the user
interface layer and thus depends on I/O
to a great extent.

In contrast to the GCC, there is a
charge of around 400 US dollars for
using the Intel compiler. Linux develop-
ers who put the compiler to
non-commercial use are provided with a
“free non-commercial unsupported ver-
sion”. Experimenting with the kernel
2.6.5 and the ICC 8.0.055 [1] quickly
shows that building the kernel is not
simply a matter of adding a few patches,
despite Intel’s claims at [2], at least not
with kernel 2.6.

Hard Going
Intel’s claim that the ICC 8.0 is source
code and binary compatible to GCC 3.2
is true of the Linux kernel in only a very
restricted sense. In theory, it is quite sim-
ple to change the kernel compiler. You
replace gcc with a new compiler in the
top level makefile. Unfortunately, the
Linux source code is hard going for any
compiler, and just goes to show that the
two are not 100% compatible after all.

The concept of compiler compatibility
may need some explanation. As a rule,

The Intel C compiler typically generates much quicker code than the GCC.

Unfortunately, previous efforts to run the Linux kernel 2.6 through this tool

have been doomed to failure. This exclusive report shows how to do this

despite the odds, and also provides evidence of the performance boost.

BY INGO A. KUBBILUN

Compiling the Linux kernel with the Intel compiler

Kernel Tuning

44 August 2004 www.linux-magazine.com

Intel C CompilerKNOW HOW



exploited. I was unable to create SIMD
(Single Instruction Multiple Data) code
for the kernel, using the Intel compiler
vectorizer. Refer to the “Why SIMD does
not work” box. Even without SIMD,
there is enough potential for creating
highly optimized kernel code.

Minimally Invasive
The set of patches we will be looking at
honors a golden rule of patching: keep
the number of modifications to a mini-
mum! This ensures that kernel
modifications will migrate to future ver-
sions with a minimum of effort. The
patch [3] updates a number of kernel
makefiles. The ccd tool referred to earlier
replaces the GNU compiler gcc in the top
level makefile. The INSTALL file from the
archive explains how to install the patch.

Some of the Intel compiler’s command
line options are incompatible to the GCC.
This particularly applies to options that
control the creation frame pointers, or
specify a processor architecture. Again
you need to set the right options to dis-
able SIMD instructions for the kernel (in
arch/i386/Makefile). A few more minor
changes will take us to our goal of suc-
cessfully compiling the kernel.

There is evidence of the Intel com-
piler’s improved compatibility to the
GNU compiler. Up to and including ver-
sion 7, the Intel compiler created empty
structures (i.g. for spinlocks), but speci-
fied a length of one. The GNU compiler
2.91.x versions had the same error.

There was a workaround that involved
pretending to use version 2.91, and
adding an element called gcc_is_buggy to
the purportedly empty structures – in

fact, icc_is_buggy would have been a
more appropriate name. Fortunately,
Intel finally got round to removing this
bug from version 8 of the compiler, thus
removing the need for the workaround.

SIGSEGV
Despite completing all these steps, our
kernel is still binary junk in its present
state, and it has very restricted function-
ality. An attempt to load a kernel module
with common symbols is doomed to fail-
ure. This refers to global variables which
are neither static nor initialized. All ker-
nel sources are compiled with the
-fno-common flag, which the Intel com-
piler respects. Unfortunately, ICC
implements the -fno-common option dif-
ferently. In a post-processing step, the

ccd tool replaces all common symbols
with equivalent constructs and moves
the variables to the .bss section.

In addition, the Intel compiler has an
individual approach to some attributes,
such as __attribute__((used)). The com-
piler tags the exported kernel symbol as
used, although the kernel code does not
reference the symbol. The attribute is a
note to the compiler that means “avoid
removing variables and functions with
this tag during optimizing”. The Intel
compiler’s IPO mechanism cancels the
effect of this attribute. The workaround
involves introducing dummy access
functions, which ccd removes prior to
assembly.

Loading the ieee1394.ko module raises
a SIGSEGV exception. A quick glance at

45www.linux-magazine.com August 2004

KNOW HOWIntel C Compiler

To install Intel’s C++ Compiler 8 for Linux,
you need at least 100Mbytes of storage
space and a glibc version 2.2.5, 2.2.93, or 2.3.2.
The first step is to fill out a form on the Intel
homepage [1], and agree to the license con-
ditions.The license allows you to compile
only private code. Intel will send an email to
the address you provide giving you explicit
instructions.

After completing the download, you should
have a 64MByte tar.gz archive on your disk.
The unpacked files include the required RPM
files, and the install.sh script, which you can
call by entering source.The installation script
uses the rpm command, and thus needs root
privileges. If you do not have root privileges,
or do not use an RPM-based distribution, fol-
low the instructions in C++ReleaseNotes.htm
on using rpm2cpio to dissect the RPM files.
Before you launch into the install, make sure
you install the license file from the email

into the directory that the INTEL_LICENSE_
FILE variable points to.You can edit the vari-
able, although keeping the default,
/opt/intel/licenses, is recommended.
Configuration
You need to change a few settings after
installing icc. If the Intel compiler resides in
/opt/intel/, the default settings will be
located in /opt /intel/bin/icc.cfg.You can
modify this file to suit your requirements.
Intel provides scripts that automatically set
the PATH and LD_LIBRARY_PATH environ-
ment variables. Load the script for your shell
before compiling.The following example is
for bash:
./opt/intel/bin/iccvars.sh

Admins of developer machines will want to
add these files to the start files for their own
shell, for example /etc/bashrc.

Installing ICC

Figure 1: Configure the kernel to reflect your current hardware setup. Figure 2: Ensure that experimental kernel modules run with the GCC.



again led to errors. A detailed search led
me to a code segment that implemented
the RC5 symmetric cipher. It uses inline
Assembler to perform bitwise rotation,
and this is where things start to go wrong.

It looks like Intel does not support
Assembler in C code, instead expecting
developers to use the compiler’s intrinsic
functions to avoid mixed code. In the
case of the OpenSSL RC5 algorithm,
switching to the intrinsic functions, _lrotl
and _lrotr, did the trick.

Tricks ‘n’ Traps
Although this workaround is fine for the
OpenSSL library, it does not help the
Linux kernel. The kernel is so low level
that a mixture of C and Assembler is
unavoidable at times. The Intel compiler
does not provide intrinsic functions that
could be used instead. After a search for
the error in the Ext-2 subsystem that
involved a number of kernel compo-
nents, I discovered the cause of the issue
in the atomic_dec_and_lock() function.

Listing 1 shows the section from the C
file arch/i386/lib/dec_and_lock.c; the
faulty Assembler code courtesy of the
Intel compiler is shown in Listing 2. The
Intel compiler analyzes the inline
Assembler parameters incorrectly and
applies the cmpxchgl command to a local
copy of atomic->counter, rather than to
the counter itself. This is a critical error

in the stricter sense of the word, as it
means that synchronous access to coun-
ters on SMP computers cannot be
guaranteed. Resolving this problem
means replacing the critical section in
atomic_dec _and_lock with new Assem-
bler code as soon as the symbol __INTEL
_COMPILER is defined.

Temporarily fixed: The ICC-built ker-
nel runs without any glitches on the
author’s three computers:
• a Pentium 4 laptop running at 2GHz

with 512MBytes RAM,
• a dual Pentium III Server running at

2x500MHz with 512MBytes RAM and
• a Pentium 4 desktop running at

2.26GHz with 1024MBytes RAM.

Interprocedural Aspects
The kernel in its current state is not
noticeably quicker than a GCC-built ker-
nel. The reason is that the Intel
compiler’s mechanisms, IPO (Interproce-
dural Optimization) and PGO (Profile
Guided Optimization), have not been
applied so far. In the course of interpro-
cedural optimization, the Intel compiler
decides which functions to expand
inline, and if storing temporary results in
the CPU registers it will speed up execu-
tion flow to an extent that makes the
effort worthwhile. Decisions are reached
by reference to pre-defined heuristics for
the individual processor architectures.

the ELF binary file for the module tells
us that the Intel compiler generates
faulty relocations for alternative instruc-
tions. If you compile a module for a
specific processor architecture, and
transfer the binary to a similar platform,
the Linux kernel will be able to replace
existing CPU instructions with equiva-
lent, compatible instructions. Modules 
of this kind are identified by the ELF 
sections .altinstr_replacement and .altin-
structions.

Checking include/asm-i386/processor.h
reveals the cause of the exception. The
prefetch is declared extern inline, but has
a function stub. Changing this to static
inline provides the required relocations.
This does not explain why the compiler
does not perform at this point.

Mixed Bunch
So far, so good, but we are not finished
yet. If you use a kernel built in this way,
the next problem is just around the cor-
ner. The Ext-2 subsystem fails when
attempting to unmount a partition. The
reason is the Intel compiler has difficulty
processing mixed C/Assembler blocks,
and generates faulty object code repro-
ducibly in this case.

This behavior is not restricted to the
Linux kernel, as is evidenced by compil-
ing the OpenSSL library 0.9.7d. My own
experiments after compiling with the ICC

46 August 2004 www.linux-magazine.com

Intel C CompilerKNOW HOW

Both compilers, GCC and ICC, can handle
SIMD instructions (Single Instruction Multi-
ple Data) for Intel processors.These
commands were introduced step by step for
Pentium MMX, Pentium II, and 4 CPUs. Intel
distinguishes between MMX (Multimedia
Extensions), SSE (Streaming SIMD Exten-
sions), SSE2, and SSE3.The
principle is as follows. A SIMD
command tells the CPU to
process multiple data snippets of
the same type at the same time
(see Figure 3).These extensions
can mean major performance
gains for normal applications.
The extensions mainly affect
floating point arithmetic, but
almost any program will contain
loops which the compiler can
vectorize.The compiler can also
analyze the datastream to col-
late multiple memory access to
achieve 128 bit data transfer, as

supported by SSE. Reports from users and
my own observations indicate that the ICC
vectorizer is superior to the GNU counter-
part.
These instruction sets should mean perfor-
mance gains for the Intel compiler in the
case of the Linux kernel – but they don’t.The

background is as follows.The CPU registers
used by the new instruction units are the
same as the MMX floating point registers.
Whenever the Linux kernel changes context,
it stores both the general registers and the
MMX and SSE floating point registers to
allow every process to leverage the exten-
sions.
When changing from the userspace to ker-
nel mode, the entry points store only the
general registers.Whenever the kernel pro-
gram code uses the processor extensions,
without saving the appropriate registers, the
kernel code overwrites application values
without so much as a by your leave.That is
fatal for SIMD code in the kernel space.
The kernel_fpu_begin and kernel_fpu_end
functions that protect a SIMD area against
preemption, and store the complete FPU/SSE
context, are no help here.The Intel compiler
generates SIMD code sequences at arbitrary
points in the kernel, and without this protec-
tion.

Why SIMD Does Not Work

Figure 3: An SISD processor (left) processes a single data field
per instruction whereas an SIMD processor (right) processes
multiple data at each step.

SISD - Processor SIMD - Processor

OutputOutput

Data DataOperation Data DataOperation



A combination of options, -ipo and 
-ipo_obj, enables the IPO mechanism
across all source code. This reveals
another program with mixed C and
Assembler. The ICC quits with an inter-
nal compiler error (0_(4900+5)) in
include/asm-i386/byteorder.h. Replace
the inline Assembler instructions with
intrinsic functions to solve the problem.

IPO Pitfalls
The GNU compiler uses the function
attribute always_inline for the inline
keyword, and this is also implemented
by the Intel compiler. The kernel sources
use this attribute for all inline functions.
Every compiler should expand functions
with this tag, although this may appear

to stand in the way of optimization fea-
tures. The Intel compiler regards the tag
as a friendly note, and relies on IPO deci-
sions instead. The large number of bit
manipulation operations in the kernel
(defined in include/asm-i386/bitops.h)
indicates that this was not one of the
Intel developers’ best design decisions.

Inspecting System.map shows that the
Intel compiler generates many instances
of the function as separate (static) func-
tions, but not as inline functions. The
Intel developers surely can not have
intended the compiler to create a sepa-
rate function with prolog and epilog, call
and stack cleanup, for an inline function
with a single line.

The Intel compiler fights the obvious
solution, that is forcing the compiler to
expand inline functions by rewriting the
inline functions as C macros, tooth and
nail. Only a few inline functions can be
modified in this way without the com-
piler generating faulty object code.

Converting every single bit manipula-
tion function into a macro would leave a
trail of code destruction. The ccd intro-
duced previously helps resolve the
problem. The —assem option tells ccd to
generate intermediary Assembler code
and store it for inspection in .c.S files.

Dreamteam: IPO and PGO
A combination of IPO with profile driven
ICC optimization provides the perfor-
mance boost, when compared with gcc,
including version 3.3.3. ICC uses a three-
phases compiler model that lets it access
information on the execution state, and
thus reorder and  optimize commands.

To optimize, you need to enable PGO
instrumentalization and leave it running
for a while. This tells the Intel compiler
to generate so-called PGO segment pack-
ets and PGO code with a profile of the
current program, and storing time con-
trolled PGO segments in files. In the
third phase, feedback compilation, you
need to feed these files to the compiler to
perform optimized compilation.

The intlpgo kernel module in the patch
discussed in this article makes the Linux
kernel PGO-aware. It interacts with the
new pgod daemon to store profile data in
files. The manpages and the source code
for both tools provide more information
on adding PGO capabilities to the kernel
and building both tools [3]. Profile-dri-
ven optimization allows the following:
• Analysis of a kernel’s behavior during

execution,
• specific optimization and
• creation of specialized kernels.

47www.linux-magazine.com August 2004

KNOW HOWIntel C Compiler

01 int
atomic_dec_and_lock(atomic_t
*atomic, spinlock_t *lock)

02 {
03 int counter;
04 int newcount;
05
06 repeat:
07 counter =

atomic_read(atomic);
08 newcount = counter-1;
09
10 if (!newcount)
11 goto slow_path;
12
13 asm volatile(„lock; cmpxchgl

%1,%2“
14 :“=a“ (newcount)
15 :“r“ (newcount), „m“

(atomic->counter), „0“
(counter));

16
17 /* If the above failed,

„eax“ will have changed */
18 if (newcount != counter)
19 goto repeat;
20 return 0;
21
22 slow_path:
23 spin_lock(lock);
24 if

(atomic_dec_and_test(atomic))
25 return 1;
26 spin_unlock(lock);
27 return 0;
28 }

Listing 1: Excerpt from
dec_and_lock.c

01 .globl atomic_dec_and_lock
02 atomic_dec_and_lock:
03 # parameter 1: 28 + %esp

(atomic)
04 # parameter 2: 32 + %esp

(lock)
05 ..B1.1:
06 pushl %esi
07 pushl %ebx
08 subl $16, %esp
09 movl 28(%esp), %ebx # %ebx

= atomic
10 ..B1.2:
11 movl (%ebx), %esi # %esi =

atomic->counter
12 movl %esi, (%esp) # (%esp)

= counter
13 addl $-1, %esi # %esi =

newcount
14 je ..B1.5
15 ..B1.3:
16 movl (%ebx), %ecx # %ecx =

atomic->counter
17 movl (%esp), %edx # %edx =

counter
18 movl %ecx, 12(%esp) #

12(%esp) = DUPLICATE
19 # atomic->counter
20 movl %edx, %eax # %eax =

counter
21 # inline param: „0“

(counter)
22 # Begin ASM
23 lock; cmpxchgl %esi,12(%esp)

# %1 = %esi = newcount
24 # %2 = 12(%esp) =

DUPLICATE
25 # atomic->counter
26 # End ASM
27 cmpl %edx, %eax
28 jne ..B1.2
29 ..B1.4:
30 xorl %eax, %eax
31 addl $16, %esp
32 popl %ebx
33 popl %esi
34 ret
35 ..B1.5:

Listing 2: Assembler atomic_dec_and_lock



• Standard kernel 2.6.5 built with GCC
3.3.3

• Standard kernel 2.6.5 built with ICC
8.0.055 using the patches and tools
from [3]

• The benchmark was repeated nine
times for each kernel and the results
computed.

The kernel with profile-driven optimi-
zations was subjected to various,
unspecified loads (file system, network
traffic, background and foreground activ-
ity) for PGO instrumentalization. Table 1
shows the values measured by the OPro-
file module as a collection of samples,
collected by the NMI (Non Maskable
Interrupt) while the benchmark was run-
ning. This is the number of processor
cycles in non-stopped state for a counter

overflow of 22600 on
the test system, which
corresponds to a
counter resolution of
about 10 microsec-
onds at a clock speed
of 2.26GHz.

On average, the
benchmarks revealed
a performance advan-
tage of 8.7 percent for
the Intel kernel. This
may not seem a lot at
first, but it means that
you could extend the
lifetime of a machine
that has reached the
limit of its processing
capacity by 8.7%,
before having to
replace it with a more
powerful box. Thus,

the performance boost does have a
noticeable economic effect, above all,
for servers and clustered machines.

Some tests showed good perfor-
mance results: lat_unix (interprocess
communication via Unix sockets) –
over 13 percent, lat_rpc (communica-
tion via Sun RPC) – 33 percent, and
lat_pipe (communication via pipes) –
41 percent. The Intel kernel lost out
with lat_sig (install signal handler,
trigger signals) – minus 1.4 percent
and lat_ctx (context change) – minus
1.2 percent.

The former may be due to the fact
that signal code is not frequently iter-
ated – this makes the going tough for

PGO. The context change results may be
due to the base pointer that the kernel
requests when compiling sched.c. A one
percent degree of imprecision, or less,
can be assumed for all results.

Better for Dedicated Tasks
There is no doubt about the general
applicability of the comparison thanks to
the PGO mechanism, and this also
emphasizes the power of the Intel com-
piler. Based on the results, it seems
obvious that no GCC-built kernel would
be capable of competing with a purpose
built, PGO instrumentalized ICC kernel.

Admins should look into their options
for creating high-performance Linux
environments for dedicated tasks, such
as database servers, by compiling any
critical components (kernel, server,
libraries) with the Intel compiler using
the IPO and PGO options, and running
the machine for an extended period
under real conditions to support PGO
instrumentalization. Feedback compila-
tion will then produce the quickest
possible combination. ■

Figure 4 shows an example of the last
point. The Intel codecov tool gener-
ates HTML pages for all source files
from the profile data. The files pro-
vide data on the executed code
blocks, and execution frequency.
Restricting the application of the cur-
rent kernel to specific scenarios, for
example desktops, Web or database
servers, allows the PGO mechanism
to build special-purpose, optimized
kernels, which also reflect the execu-
tion frequency of device drivers for
the current hardware.

How Big is the
Performance Boost?
It is quite difficult to achieve repro-
ducible results that allow us to compare
runtime behavior of the kernel builds.
Linus Torvalds uses the synthetic
LMBench [4] benchmark for checking
optimization results. Unfortunately, the
benchmark does not provide truly granu-
lar results that would allow a genuine
comparison. Adding the OProfile [5] ker-
nel module changes this. The module
uses Pentium 4 registers that allow an
extremely granular performance check at
CPU processor cycle level.

The following setup was used to verify
the efficiency of this approach:
• Pentium 4 machine running at 2.26

GHz with 1024MBytes RAM
• LMBench and OProfile for benchmark-

ing

48 August 2004 www.linux-magazine.com

Intel C CompilerKNOW HOW

[1] Intel C Compiler for Linux:
http://support.intel.com/support/
performancetools/c/linux/

[2] Intel document on compiler compatibil-
ity: http://developer.intel.com/software/
products/compilers/techtopics/
LinuxCompilersCompatibility.htm

[3] Kernel patch and tools: http://www.
pyrillion.org/linuxkernelpatch.html

[4] LMBench:
http://www.bitmover.com/lmbench

[5] OProfile: http://oprofile.sourceforge.net

INFO

LMBench Test GCC ICC Performance boost
Read file 667.353 641.146 +3.93 %
Read file (Memmap) 355.139 332.860 +6.27 %
Data transfer (Pipe) 51.251 46.309 +9.64 %
Data transfer (TCP/IP Socket) 404.764 404.371 +0.10 %
Data transfer (Unix Socket) 61.422 57.660 +6.12 %
IP connection latency (TCP/IP) 8.727 8.719 +0.09 %
Context change 166.269 168.229 -1.18 %
File system (create/delete) 618.093 611.237 +1.11 %
File (Memmap/unmap) 77.508 70.242 +9.37 %
Page errors (File) 1.409 1.351 +4.12 %
IPC latency (Pipe) 31.224 18.243 +41.57 %
Process generation 12.832 12.325 +3.95 %
IPC latency (Sun RPC) 169.344 113.342 +33.07 %
Select (file/TCP connection) 62.676 60.264 +3.85 %
Signals (install/trigger) 53.297 54.053 -1.42 %
Simple system call 30.970 30.466 +1.63 %
IPC latency (TCP/IP) 62.500 60.700 +2.88 %
IPC latency (UDP/IP) 58.845 57.982 +1.47 %
IPC latency (Unix Socket) 54.854 47.464 +13.47 %

Table 1: Benchmark Results

Figure 4: preempt_schedule from sched.c is one of the 
most frequently used of all Linux kernel functions. The
frequency is shown by colored blocks that indicate which
blocks were covered, partially covered, and not executed.


