
XML is a set of rules and conventions
that allows you to create languages that
look similar to HTML. These languages
include tags, attributes, content and
other concepts that constitute HTML.
The XML technology allows you to cre-
ate your own tags and language that can
be used for your own purpose. For exam-
ple, if we wanted to store addresses in
XML, we could create:

<address>
<forename>Bob</forename>
<surname>Smith</surname>
<address>25, The Grove, LondonU
, W2 4DF</address>
<phone> 020 344 5443</phone>
</address>

Here we are using specifics tags to
denote specific chunks of information,
and we can then write software to read
these tags in and use the content in the
way we want to.

XUL follows the same concept, but the
tags are used to create specific interface
elements. Where the magic occurs
though, is when Mozilla reads the tags in
and actually creates the interface ele-
ments for you. The XML file is a simple
means of specifying what you want in
your interface and where.

Although such gems as the Sinclair
C5, the Chopper, Tab Clear and
Microsoft FoxPro have fallen by

the wayside, there are some products
and technologies that have stuck. One
such technology is the Web.

There is little doubt that the Web has
made a huge impact in the way we com-
municate, shop and do other things.
Despite the politics of the browser wars,
the incompetently implemented stan-
dards and the censorship attempts by
certain American politicians, the Web
has proved to be a compelling medium
where access is now pretty much
assumed. Sometimes I can hear the
words “what, you haven’t got the Inter-
net?” echoed across the land.

Despite the adoption of the Web, the
limitations have become apparent. The
most visible limitation is the fact that the
entire interface needs to be re-invented
with each developed website. Also, the
interface needs to be reloaded with each
(even marginal) change to a page. Not
only is this inefficient in the way that
redundant HTML needs to be blasted
back and forth between the server and
the browser, but it creates an environ-
ment where more dynamic changes to
the page are more difficult to perform,
giving the web a distinctly “clunky” feel.

Of all the inventions of the last 50

years or so, few nuggets of conceived

genius have risen to a point where

we all use these products regularly in

our daily lives. Even so, we do not

have to remain stuck with its initial

design flaws.

BY JONO BACON

XUL and Mozilla development

Browser Building

52 August 2004 www.linux-magazine.com

Mozilla XULKNOW HOW

Enter XUL
The dependence on HTML and its
expected browser functionality is really
the crux in the problems that we have
just outlined. Although subsequent tech-
nologies such as Dynamic HTML
(DHTML) and the Document Object
Model (DOM) have emerged to attack
the problem, these technologies need a
degree of coaxing to get them working.

The developers behind the popular
Mozilla browser had a different idea.
With some extensive discussion and
design, the hackers have worked
together to create the XML User Interface
Language (XUL) to partially solve this
problem. Pronounced ‘zool’ (and
inspired by Ghostbusters), the XUL lan-
guage essentially seeks to re-create the
user interface features typically associ-
ated with normal graphical toolkits such
as Qt and GTK. Features such as buttons,
scrollbars, tabs, menus and more are all
available within the XUL toolkit. Many
of these features are simply not available
with normal HTML forms. Each of the
features within XUL is used by writing
(rather unsurprisingly) XML files. For
those of you who feel a sharp pain in the
head when you read the letter XML, I
will give a quick overview of what XML
is.



keymaster/gatekeeper/there.is.U
only.xul“>

Although we have four lines of code
here, this is actually a single tag; I have
just split this across a number of lines to
make it easier to read. Every XUL page
that you create needs a <window> tag
that can be used to contain the widgets
that form your interface. Inside this tag
we have also used three attributes. The
first (id) is a unique reference that points
to this tag in the XML. The id attribute is
essential for being able to communicate
with tags and update them with changes
and information. This will become
clearer later when we use the DOM to
actually update and reference tags. The
second tag (title) contains a human read-
able string that is displayed in the title
bar when you launch a XUL file in a ded-
icated window. If you load the file into
the browser as we have done, this text is
ignored. The final attribute is the xmlns
part. This value specifies the namespace
on which this <window> tag, and all
tags within, are based. A namespace is
like a special group that you can specify
to determine where a tag comes from.
This helps in situations when you may
have a <window> tag from another
XML language and a <window> tag
from the XUL language – a namespace
tells them apart.

We are now ready to put something in
our window. In our example, we are cre-
ating two buttons with the code:

<button id=“button1“ label=U
„First Button“/>
<button id=“button2“ label=U
„Second Button“/>

Each line of code is very similar, with
only the id and label attributes contain-
ing different content. The id attribute
behaves in exactly the same way as the
<window> equivalent – it is used to
reference the tag later. The label attribute
contains the actual text that will appear
on the button.

Some of you may be wondering what
the backslash is doing in the tag. Unlike
some forms of HTML, where you can
leave off tags here and there, XML is very
strict about correct markup. With the
case of our <button> tags, we should
really include a closing </button> tag

to keep with the rules of the XML. The
backslash at the end of our <button>
tag is shorthand for including the
</button> tag. You will see this kind of
shorthand used commonly in XML. To
finish off our file, we include the closing
</window> tag.

Layout management
Something you will have noticed from
our first example is the way that the sec-
ond button is positioned below the first.
This is the default behavior for widgets
that have no kind of layout specified.
Although fine for simple pages, this
stock method of laying out widgets is not
flexible enough. This is where we need
to use a Layout Manager.

Layout management is something that
is common in most GUI widget sets such
as Qt and GTK. The simple premise is
that you place widgets inside another
invisible widget that lays your visible
widgets out in a particular method. In
most toolkits, this comprises a Horizon-
tal and Vertical layout manager. This
standard method of handling layouts has
been transferred over to XUL, and we
consequently have the <hbox> and
<vbox> tags. Here is an example of
<hbox> management:

<hbox>
<button id=“button1“ label=U
„First Button“/>
<button id=“button2“ label=U
„Second button“/>
</hbox>

53www.linux-magazine.com August 2004

KNOW HOWMozilla XUL

<?xml version=“1.0“?>
<?xml-stylesheet
href=“chrome://global/skin/“
type=“text/css“?>

<window
id=“firstwindow“
title=“First XUL Window“

xmlns=“http://www.mozilla.org/key
master/gatekeeper/there.is.only.x
ul“>

<button id=“button1“
label=“First Button“/>

<button id=“button2“
label=“Second Button“/>
</window>

Listing 1: Xul1.xul

Figure 1: Not exactly the cleverest of XUL scripts,
but it is a start!

Getting started
In this first part of our series, I will be
showing you how to get a XUL based
interface mocked up. This interface will
comprise of some of the different XUL
components available, and although we
will not be covering how to actually
make these widgets do something until
the next issue, we will have a good
grounding in actually creating our visual
interfaces. To get started, we will create a
simple XUL file that simply contains two
buttons. To do this, create a new file
called xul1.xul and add the following
code to it. See Listing 1.

When you have added the code, use
File | Open File to locate the file and load
it into Mozilla. You should see some-
thing similar to Figure 1.

Any XML file, irrespective of what it is
doing, should really have some lines at
the top of the file that indicate the ver-
sion of the XML, and a stylesheet if
applicable. In our example, we have the
following two lines:

<?xml version=“1.0“?>
<?xml-stylesheet href=“chrome:/U
/global/skin/“ type=“text/css“?>

As you can see, we have a version line
that specifies this XML version as 1.0.
The second line indicates that our
stylesheet is in the chrome path. The
chrome path contains some internal
Mozilla facilities that typically manage
the user interface of Mozilla.

Our next lines contain our first tag:

<window
id=“firstwindow“
title=“First XUL Window“
xmlns=“http://www.mozilla.org/U



</hbox>
<vbox>
<button id=“button1“ label=U
„First Button (V)“/>
<button id=“button2“ label=U
„Second button (V)“/>
</vbox>

Where things get really interesting is
when you combine one type of layout
manager inside another. Take the follow-
ing code for example:

<hbox>
<button id=“button1“ label=U
„First Button (H)“/>
<button id=“button2“ label=U
„Second button (H)“/>
<vbox>
<button id=“button1“ label=U
„First Button (V)“/>
<button id=“button2“ label=U
„Second button (V)“/>
</vbox>
</hbox>

Here we have put the vertically managed
within the horizontally managed but-
tons. Note how we have placed the
vertical block of buttons after widgets
within the horizontal block. Due to the
placement of our widgets, you should
see something such as that in Figure 3.

One thing to be aware of when we are
placing our widgets, is how the layout
managers handle space. In our last

example, the horizontal buttons were
stretched wider to accommodate the
room for the vertical buttons. This is
because the vertical layout manager was
nested inside the horizontal manager
and affected the horizontal widgets.

More exotic widgets
The true power of XUL lies in the way it
can surpass HTML as a means of getting
information from the user. This power
lies in the way we can use normal GUI
application widgets, but within the con-
cept of the web. In the next example we
are going to create two tabs, one with a
multi-line text editing widget and one
with a selectable list box. In this exam-
ple, the tabs and the list box are not
typically used in a web environment. We
will go through this example step by step
and write the code as we progress.

The way the <hbox> tag works, is to
horizontally place widgets between the
<hbox> and </hbox> tags next to
each other. The result of this code is Fig-
ure 2.

The other kind of layout management
is the <vbox> tag. This tag behaves in
exactly the same way as the <hbox>
tag, but displays its child widgets (wid-
gets inside the <vbox> and </vbox>
tags) vertically. If we place a similar
block below our <hbox> block, you
can see how it works. I have also put (H)
on the horizontally managed buttons
and (V) on the vertically managed but-
tons:

<hbox>
<button id=“button1“ label=U
„First Button (H)“/>
<button id=“button2“ label=U
„Second button (H)“/>

54 August 2004 www.linux-magazine.com

Mozilla XULKNOW HOW

Figure 2: Horizontal layout management. Figure 3: Combining horizontal and vertical lay-
out management.

In our exploration of the XUL landscape we
have currently only made use of layout man-
agers and push buttons.There are a great
many other widgets that we can make use
of, and we will first look at the common
HTML style widgets that can be used.We will
learn these tags by running some code:

<vbox>
<hbox>
<label value=“Checkboxes“/>
<vbox>
<checkbox id=“check1“ label=U

„First“/>
<checkbox id=“check2“ label=U

„Second“/>
</vbox>

</hbox>
<hbox>
<label value=“Radio buttons“/>

<vbox>
<radio id=“radio1“ label=U

„First“/>
<radio id=“radio2“ label=U

„Second“/>
</vbox>

</hbox>
<hbox>
<label value=“Text box“/>
<vbox>
<textbox id=“textbox“/>
</vbox>

</hbox>
<hbox>
<label value=“Multiline U

Text box“/>
<textbox id=“multitextbox“ U

multiline=“true“/>

</hbox>
</vbox>

With this code we are laying out a number of
widget descriptions and their corresponding
widgets.We are using the <label> tag to
specify text in our XUL interface.We use the
attribute of of this tag to contain the text
that we want to display in the label.

Our first type of widget is a checkbox.We
create this with the <checkbox> tag, and we
use the label attribute to specify the text
next to the checkbox.The second widget we
use is a radio button, and we use the <radio>
tag in the same way to create this widget.
Next, we create a single line text edit box.
There is no label associated with the box, so
we simply set the id attribute within the
<textbox> tag. Finally, we create a multiline
text box.To do this, we simply add multi-
line=“true”to a normal text box.

HTML type widgets



First, create a new file with the XML
version, stylesheet and <window>
tags, and then add the following lines:

<tabbox>
<tabs>
<tab label=“Text Editor“/>
<tab label=“List Box“/>

</tabs>

Here we begin by creating a new widget
that contains tabs (<tabbox>). A tab
box will contain a number of tabs that in

turn can contain other widgets. We then
open up the <tabs> tag to specify the
names of the tabs in our interface. For
each tab we use the <tab> tag to spec-
ify what label should be defined . Your
tabs will be added from left to right in
the order in which you specify them in
the XUL file. In this case, the Text Editor
tab will be the tab on the left, and the
List Box tab will be on the right. We now
need to create our actual tab panels. We
do this by first creating a general tab
panels tag:

<tabpanels>

Now we create each panel in turn. First
we will create our textbox panel. We use
the <tabpanel> tag to create each panel
and then fill it with other widgets:

<tabpanel id=“text“>
<label value=U

„Type in some text:“/>
<textbox id=“textbox“ U

multiline=“true“ flex=“1“/>
</tabpanel>

You may have spotted the flex attribute
that sneaked its way into the code. When
you set this attribute to 1, the widget will
be stretched to take up all available
space.

For our second panel we will create
our list box inside the panel. We use the
<listbox> tag to create the main box,
and then we use the <listitem> tag to
add each item to the box.

<tabpanel id=“listbox“>
<label value=“Fave colour?“/>

KNOW HOWMozilla XUL

Figure 4: Using tabs and a list box. Figure 5: A complete XUL interface.

WWW.LINUX-MAGAZINE.COM/NEWSLETTER

Want to know what’s up next?Want to know what’s up next?
Subscribe Subscribe to Linux Magazine Preview,

our free monthly email newsletter!



<menu id=“filemenu“ U

label=“File“>
<menupopup id=“file-popup“>
<menuitem label=“New“/>
<menuitem label=“Open“/>
<menuitem label=“Save“/>
<menuseparator/>
<menuitem label=“Exit“/>

</menupopup>
</menu>

To create the menu, we first use the
<menu> tag to create the actual menu
entry, and then we use the
<menupopup> to create the drop down
menu popup area. Finally, we add a
number of menu items with the <menu-
item> tags. We will now use the same
concept to create the Edit menu:

<menu id=“editmenu“ U

label=“Edit“>
<menupopup id=“editpopup“>
<menuitem label=“Undo“/>

<menuitem label=“Redo“/>
</menupopup>
</menu>

</menubar>

With our menus added, we are ready to
create our main interface area. If you
look at Figure 5 you can see the result of
our interface and how it is constructed.

In our interface we have a list box on
the left side of the screen and the tabs on
the right side. To manage this layout we
first need to open up a <hbox> tag and
then create the listbox:

<hbox>
<listbox flex=“1“>
<listitem label=“Red“/>
<listitem label=“Blue“/>
<listitem label=“Yellow“/>
<listitem label=“Green“/>

</listbox>

Next we are going to use a special widget
called a splitter to add a resizeable bar
that allows the user to adjust the size of
the widget on the left and the right of the
divider. We use the <splitter/> tag to
create this widget:

<splitter/>

The next chunk of code is our familiar
tab box that contains text editing and list

box tabs. See Listing 3. This code is no
different from the code in our previous
example. Finally we close the horizontal
layout manager and the window:

</hbox>
</window>

Conclusion
In this first part of our series we have
covered a lot of ground. Not only have
we thrown ourselves kicking and
screaming into the world of XML and
XUL programs, but we have covered
HTML style widgets, special widgets,
layout management, tab boxes, menus
and more. With the knowledge we have
developed so far, we have the ability to
to create fairly expansive XUL interfaces.
There are of course many more widgets
available, and we will cover some of
these in a later issue.

Next month we are going to take our
knowledge from this issue and make it
fully functional. We are going to take the
JavaScript capabilities of Mozilla and
merge them with XUL to make our inter-
faces interact with the user. ■

<listbox flex=“1“>
<listitem label=“Red“/>
<listitem label=“Blue“/>
<listitem label=“Yellow“/>

<listitem label=“Green“/>
</listbox>

</tabpanel>

Finally, we close the tab panels and main
tab box:

</tabpanels>
</tabbox>

You can see our completed interface in
Figure 4.

A complete interfaces
To complete this first installment on XUL
programming, we will run through a
complete example of a XUL interface.
This interface will include some of the
code we have already covered as well as
some menus and a splitter (resizeable
divider). We will step through every line
of code to cement the understanding of
everything that we have covered.

First, we will begin with the XML defi-
nition tags and the creation of a main
window. See Listing 2.

The first widgets that I will add are
some menus. Creating them follows the
same principle that we have been using
previously by nesting tags inside each
other to build the different elements. We
begin by first creating a menu bar (the
bar that the menus sit in) with the
<menubar> tag.

<menubar id=“menubar“>

Next, we will add a complete menu. In
this case, the File menu:

56 August 2004 www.linux-magazine.com

Mozilla XULKNOW HOW

<?xml version=“1.0“?>
<?xml-stylesheet
href=“chrome://global/skin/“
type=“text/css“?>

<window
id=“complete“
title=“Complete Example“

xmlns=“http://www.mozilla.org/key
master/gatekeeper/there.is.only.x
ul“>

Listing 2: Main Window

<tabbox>
<tabs>
<tab label=“Text Editor“/>
<tab label=“List Box“/>

</tabs>
<tabpanels>
<tabpanel id=“text“>
<label value=“Type in

some text:“/>
<textbox id=“textbox“

multiline=“true“ flex=“1“/>
</tabpanel>
<tabpanel id=“listbox“>
<label value=“Fave

colour?“/>
<listbox flex=“1“>
<listitem label=“Red“/>
<listitem

label=“Blue“/>
<listitem

label=“Yellow“/>
<listitem

label=“Green“/>
</listbox>

</tabpanel>
</tabpanels>

</tabbox>

Listing 3: Tab box


