
Linux has a sophisticated system of
permissions. Each file has an
owner, with detailed access rights

to define who is allowed to read, write,
or execute files. Linux distinguishes bet-
ween access privileges for the file owner,
the members of a group, and all other
users on the system. As usual, the
administrative user, root, is allowed to do
everything, so you should be careful
with the commands we will be looking
at in this month’s column.

The chmod allows you to change file
access permissions, assuming that you
are the file owner or system administra-
tor, that is. As the root user, you can also
assign a new owner to the file using the
chown command. If you want to assign
default access permissions, then the
umask command is the place to do this.
So let’s start off on our path through the
“permissions jungle”.

Users and Groups
There are three ways of controlling user
permissions. First, there are permissions
for the file owner, then for a whole group
of users (you can assign each file to
exactly one group), and finally for all
other users on the system that do not fit
into one of the other categories.

83www.linux-magazine.com August 2004

LINUX USERCommand Line
w

w
w

.photocase.de

The principle of
organizing multiple
users into groups has
a lot of advantages.
Many distributions
have a group called
audio, where users are
allowed to access the sound
device (/dev/dsp) among other
things. Most distros organize access to
CD and DVD-ROM drives in a similar
way. Thus, the members of a group have
the same permissions. Users that do not
belong to this group are known collec-
tively as “others”.

The ls command with the -l flag not
only lists the filename, but also its type,
permissions, owner, group and size (see
Box 1).

Note the letters and dashes in the first
column of this output representing the
access privileges for the file. The third
column shows the owner (user huhn),
followed by the group (video or users).
Permissions are easy to decipher: the
first character denotes the file type. A
dash indicates a “normal” file, d stands
for “directory”: the other possibilities
being b (block device), c (character
device), l (symbolic link), p (FIFO file,
named pipe), or s (Unix domain socket).

chmod, chown, chgrp and umask

Secure access rights?
Hands off other people’s files. An intelligent system of permissions under

Linux means that you can allow others access to, or prevent them from

accessing, your files. Commands like chmod and chgrp help you do

this. Additionally, you can use umask to define user permissions.

BY HEIKE JURZIK

01 huhn@open:~$ ls -l
02 [...]
03 -rw-rw---- 1 huhn video 3002156 2004-05-24 20:29 foo.mpg
04 -rw------- 1 huhn users 3526 2004-05-24 20:26

permissions.html
05 drwx------ 3 huhn users 4096 2004-05-24 19:16 titlepix/
06 [...]

Box 1: “ls” output

The following three
groups can contain three
letters each: r (read), w

(write), and x (execute). A
dash instead of a letter means

that the permission has not been
assigned. The first group of three is

for the file owner, the second for the
group, and the third for other users. Let’s
take another look at the files in the first
example: the file foo.mpg is readable and
writable for the owner (huhn), and the
members of the video group. Other users
on the system are not permitted to read
or write to the file. Nobody can execute
this file, not even its owner.

The nine permissions flags have a
slightly different meaning for directories.
r still means “readable” – that is, the
owner (a user, a group, or others) can
enter ls to list the directory contents. x
means you can change to the directory
using the cd command, but you need
both x and w to store files in the direc-
tory. If you do not have these per-
missions, an error message to that effect
is displayed.

Although GUIs such as KDE or GNOME are
useful for various tasks, if you intend to get
the most out of your Linux machine, you will
need to revert to the good old command
line from time to time. Besides that, you will
probably be confronted with various scenar-
ios where some working knowledge will be
extremely useful in finding your way
through the command line jungle.

Command Line



multiple users, it makes sense to set the t
bit. Although users have write permis-
sions for the directory, they can only
delete their own files (and of course any
files for which they have explicit write
permissions). The t bit does affect the
owner of the directory – who is allowed
to delete any file in the directory.

All Change!
The chmod command expects the new
access permissions, and one or multiple
files to be changed, as parameters.
chmod recognizes two approaches to
describing permissions: the symbolic
and the octal approach.

The symbolic approach to writing
parameters uses the letters u (for
“user”), g (for “group”), and o (for “oth-
ers”) to define whose permissions it
should change. You can use combina-
tions of these letters, simply by entering
them without a space. This is followed
(again without a space) either by a + (if
you are adding permissions), a - (if you
are removing permissions), or a = (to
assign exactly the permissions defined in
the command). The last parameter speci-
fies the permissions: r, w, x, s, and t.

The syntax in Box 2 assigns additional
read and write permissions (rw) to a
group (g): chmod g+rw ….

You can remove the same permissions
from the group with a similar command:

chmod g-rw permissions.html

You can combine multiple steps – chmod
ug=rx,u+s file first assigns read and
execute to the owner and group, and
then sets the s bit for the owner:

-r-sr-x--- 1 huhn users 7641 20U
04-05-25 12:14 permissions.html*

If you want to change the permissions
for the owner, the group, and all others,
there is no need to type ugo. Instead, use
a (for “all”).

Mathematical Approach
Besides the symbolic, letter-based
approach, chmod also has a variant that
uses three or four-digit octal numbers.
This allows you to reassign all permis-
sions with a single command. Instead of
the mnemonics u, g and o, the chmod
expects numbers such as those in Box 3.

The numbers express the sum of 4
(read permission), 2 (write permission),
and 1 (execute permission). In other
words, you need to add the permissions
that you want to assign to the owner, the
group, and all others. Read and write are
collectively expressed as 4+2=6. The
first number applies to the owner, the
second to the group, and the third to all
others. Thus, 644 translates to -rw-r-r--,
and 777 to rwxrwxrwx.

You can also express special flags,
such as the s and t bits, as octals. To do
so, simply place another number in front
of the group of three: 4 represents the s
bit for the owner, 2 the s bit for the
group, and 1 the t bit. The following:

chmod 4755 file

sets the permissions to rwsr-xr-x – all
users are allowed to read and execute the
file, and the s bit is set for the owner.

Recursion
You can tell chmod to act recursively by
adding the -R parameter. If you need to
remove a group’s permissions for a direc-
tory, its subdirectories and any files in
them, you can simply type:

chmod -R g-w directory

The x flag is more tricky. The need x flag
has to be set, for you to change to a
directory. This means that a command
such as chmod -R 600 directory will soon
produce a Permission denied message.
This is what happens under the hood:

84 August 2004 www.linux-magazine.com

Command LineLINUX USER

01 huhn@open:~$ ls -l permissions.html
02 -rw------- 1 huhn users 3526 2004-05-24 20:26 permissions.html
03 huhn@open:~$ chmod g+rw permissions.html
04 huhn@open:~$ ls -l permissions.html
05 -rw-rw---- 1 huhn users 3526 2004-05-24 20:26 permissions.html

Box 2: Assigning permissions

01 huhn@open:~$ chmod 644 permissions.html
02 huhn@open:~$ ls -l permissions.html
03 -rw-r--r-- 1 huhn users 7641 2004-05-25 12:14 permissions.html

Box 3: Chmod with numbers

Octal numbers: Octal numbers, just like nor-
mal decimals, run from numbers 0 to 9, are
one of three common bases used in comput-
ing. Octals use only eight numbers (0
through 7), so that 10 follows 7 in this base.
Octals are particularly useful for access per-
mission management, as permissions can use
exactly the same values, 0 through 7, that is
all octal numbers.

GLOSSARY

More Permissions
However, there are more permissions
than just read, write, and execute – for
example, the s and t bits. The s (setuid)
bit is a special case for executable files. If
you set this bit for the owner or group, it
will appear in place of the x in ls output.
When you execute a file that has the s bit
set, Linux will run the file with the per-
missions assigned to the file owner
and/or group.

Setting the s bit for programs that
belong to root can be a considerable
security risk, as it allows normal users to
run the file as if they were the root user.

The s bit has a different meaning for
directories. Let’s assume that you have a
group of users who all work in the same
department of an enterprise. The admin-
istrator can create a group for these users
and assign them to the group. After
doing so, the admin could create a direc-
tory, assign it to the new group, and set
the s bit for the group. Any new files
created in this directory would then auto-
matically belong to this particular group.

The t bit is also known as the sticky
bit. It also replaces the x flag in ls output,
just like the s bit. The sticky bit is not
used often for programs, where it tells
the system to keep a program in memory
after execution, rather than releasing the
memory (this is one approach to launch-
ing programs more quickly). The t bit
has a completely different effect on
directories. You can normally delete any
file in a directory where you have write
privileges, even if this file belongs to
another user. In directories with shared
access, such as /tmp, that store files for



before the command reaches the first file
in the directory, it will already have set
the permissions for the directory itself to
600. After doing so, the command is no
longer able to change to the directory.

You can use a trick to remove the per-
missions from files only. This involves
using the find command to create a
chain of commands that firsts searches a
subdirectory for files, before running the
chmod 600 … on the files. Subdirectories
are not affected.

find directory/ -type f -exec U

chmod 600 \{\} \;

Changing Group and Owner
Assignments
The chgrp allows you to change the
group assignment for files, the only
restriction being that you need to be a
member of the new group yourself. To
discover your group assignments, enter:

huhn@open:~$ groups
users uucp dialout audio video

In this scenario, the user wants to assign
a file to the video group:

huhn@open:~$ chgrp video foo.mpg
huhn@open:~$ ls -l foo.mpg
-rw-r--r-- 1 huhn video 3002156U
2004-05-25 14:03 foo.mpg

Of course, you are out of luck if you
attempt to assign one of your own files
to the root group:

huhn@open:~$ chgrp root foo.mpg
chgrp: changing group of `fooU
.mpg': Operation not permitted

This command also supports recursion
when the -R is set.

The chown assigns files to new users,
however, use of the command is
restricted to the administrative user, root.
Enter su to become root, and then enter
chown newOwner file.

Masked
umask allows you to assign specific per-
missions directly to newly created files.
Typing umask without any parameters
displays the default setting:

huhn@open:~$ umask
0022

umask outputs a four-digit octal number
at this point, however, this does not
specify the permissions that are
assigned, but the permissions that are
removed. Thus, 0022 means that rw-r--r--

(644) permissions will be assigned to
new files, and rwxr-xr-x (755) permis-
sions to new directories (in other words
2, “write” will be disabled for the group
and other users). Note that new files are
never executable by default; in contrast
to this, the x bit is set for directories,
unless you define a umask to change
this.

To change the mask, enter umask fol-
lowed by a value. The following
command makes new files writable for
group members, for example:

umask 0002

Note that any changes will be temporary,
and restricted to the current bash ses-
sion. You need to enter the umask
command in .profile or .bashrc to make
the change permanent. The entry will
then be umask 0002 – without quotes.
The change becomes effective next time
you launch a bash session, or parse the
modified configuration file by entering .
.bashrc.

If you prefer to avoid octal numbers,
you can use a syntax similar to that of
chmod with umask.

umask u=rwx,g=rx,o=

It makes all new files readable for the
owner and group, and writable for the
owner. The same values apply to directo-
ries, but the owner and group members
are also permitted to change to the direc-
tory. ■

LINUX USERCommand Line

Bit Permissions

0 —

1 --x

2 -w-

3 (= 2+1) -wx

4 r--

5 (= 4+1) r-x

6 (= 4+2) rw-

7 (= 4+2+1) rwx

Table 1: Bit magic

SELLING OUT FAST!

For more information see:
www.linux-magazine.com/Backissues


