
Some readers may be familiar with this
kind of functionality from other graphical
toolkits; Qt has its Signal/Slots system
for example. The basic premise is that
each type of graphical control (such as a
button, scrollbar, menu, toolbar, textbox
etc) has a number of different ways in
which the user can interact with it.

As an example, with a button drawn
on the screen you can click it, with a list
of items in a box you can select an entry
and with a scroll bar you can scroll it.
Each of these different types of interac-
tion is called an Event. Some widgets
(graphical controls are commonly re-
ferred to as widgets) also have a number
of different events for different types of
interaction.

Each of these events is useless if we
cannot respond to that event with some-
thing useful, and to do this we need to
use a function. A function is simply a
special chunk of code that we can write
that does something useful. This could
change the text of some parts of the
interface, add some information to a

widget, process information
or anything else that is use-
ful.

The benefit of using
functions is that they can 
be reused over and over
again by different events. As
an example, if you write a
function that creates a new
document, you would want 
to connect it to the File-
>New menu item as well as
the toolbar button for a new

document. This way everything connects
together as one.

Dominating your code
With all of this theory discussed, you are
probably wondering how all of this fits
together in the bigger picture. How do
we create an event handler, how do we
create a function and how do we tie
everything together to work seamlessly.
The answer to all of these questions is
Javascript.

Before we go any further, a few words
should be mentioned about Javascript.
Many people sneer at the thought of
Javascript, and cite it as only useful for
creating those annoying scrolling status
bar messages and for creating menus
that can make a website feel clunky and
that only partially work in some
browsers.

Admittedly, Javascript can be used for
all of these things, and this is possibly
the most public facing side of the lan-
guage. In reality though, Javascript is a
wonderfully compact and useful little

This month we are going to take our
newfound knowledge of building
interface elements and extend

them with some real and useful func-
tionality that will be used to create the
building blocks for future applications
using XUL.

Building blocks of interaction
Any form of graphical toolkit, and XUL is
included here, is useless without the
facilities to deal with interaction. When
a user clicks on a button, scrolls a scroll-
bar, selects a tab, selects a menu item or
clicks on a toolbar button, we should
expect something to happen. As an
example, if you click on the File menu

and then click on Exit, you
would expect the appli-

cation to shut down
as planned. This
kind of interaction
involves two types

of process; an Event
Handler and a Func-
tion.

In the first installment of our XUL

programming tutorial last month, we

explored some of the different wid-

gets and facilities that XUL offers

when constructing graphical inter-

faces. Although nice to look at, our

interface was the most fickle you can

imagine – all good looks, but no

brains. BY JONO BACON

66 September 2004 www.linux-magazine.com

Mozilla XUL: Making InterfacesPROGRAMMING

Mozilla XUL: Making Interfaces

Building Blocks



language that can be considered the glue
of a web browser; it is very useful for
sticking together different types of func-
tionality.

Within the land of XUL we use a spe-
cial feature called the Document Object
Model (DOM). The idea behind the DOM
is that elements on a web page should all
be accessible in code so that we can
view and change the content of items as
and when we need then. As an example,
it would be useful to change the headline
on a website, change the date, and edit
the labels of buttons when you interact
with the website.

A common example of this kind of
functionality is with modern forum soft-
ware. When you use the formatting
buttons when composing a message to
the forum, the button will add formatting
tags to the main message textbox. How
does the button know how to communi-
cate with the message text box when you
click on it? It simply uses the DOM.

The way the DOM works is to create a
tree of all of the elements on your web
page. Take the following code as an
example:

01 <html>
02 <head>
03 <title>My Website</title>
04 </head>
05 <body>
06 <div>
07 <h1>Welcome to my U

website</h1>
08 </div>

09 <div>
10 Main content.
11 </div>
12 </body>
13 </html>

Each of the tags in the code nests inside
one another, apart from the <html> tag
which is the parent tag. The parent tag is
like the root of a tree, and each of the
other tags is like a branch coming out of
the tree. For example, if you look at the
<body> tag, we have two <div> tags
that are inside it. These two <div> tags
are like two branches. Below we can see
how our tags form into a tree, with the
<html> tag as its root:

<html>
<head>
<title>My Website</title>

<body>
<div>

<h1>Welcome to my U

website</h1>
<div>
Main content.

With our tags in a tree like this, we can
use the DOM to find certain tags and dis-
play them or get the information required
from them. This way we can find a par-
ticular tag and modify it in some way. As
a result, the DOM not only provides a
method of finding the right tags, but also
a method of updating them.

DOM and XUL
To get us off to a flying start, we will cre-
ate a simple example of creating a button
with an Event/Function system. First of
all, create a new file called first.xul and
add the following code (see Listing 1 on
the previous page):

When you load this file into a Mozilla
browser, you will get a simple button as

67www.linux-magazine.com September 2004

PROGRAMMINGMozilla XUL: Making Interfaces

01 <?xml version=”1.0”?>
02 <?xml-stylesheet

href=”chrome://global/skin/”
type=”text/css”?>

03
04 <window
05 id=”test-window”
06 title=”Test Program”
07

xmlns=”http://www.mozilla.org/
keymaster/gatekeeper/there.is.
only.xul”>

08
09 <button id=”name”

label=”My button”/>
10
11 </window>

Listing 1: first.xul

Event Description
onclick Called when the mouse is pressed and released on an element.You should only use the onclick event

when you have a reason to only respond to mouse clicks. For buttons, menu items and the like, you 
would use oncommand to respond, because it also catches users who use the keyboard or other 
devices.

onmousedown Called when a mouse button is pressed down on an element.The event handler will be called as soon 
as a mouse button is pressed, even if it hasn’t been released yet.

onmouseup Called when a mouse button is released on an element
onmouseover Called when the mouse pointer is moved onto an element.You could use this to highlight the 

element, however, CSS provides a way to do this automatically – so you shouldn’t do it with an event.
You might, however, want to display some help text on a status bar.

onmousemove Called when the mouse pointer is moved while over an element.The event will be called many times 
if the user moves the mouse – so you should try to avoid using this handler if you can.

onmouseout Called when the mouse pointer is moved off of an element.You might then unhighlight the element
or remove status text.

oncommand This event is called when a button or menu item is selected. For menus, add this handler to the 
menuitem element.You should use this handler rather than handling the mouse yourself as the user 
might select the button or menu item with the mouse or by pressing the access key or keyboard 
shortcut.

onkeypress Called when a key is pressed and released when an element has the focus.You might use this to add 
extra shortcut key handling or to check for allowed characters in a field.We’ll see how to create 
keyboard shortcuts in a later section.

onkeydown Called when a key is pressed down while an element has the focus. Note that the event will be called 
as soon as the key is pressed, even if it hasn’t been released.You probably won’t use this event very 
often as the other key events are more suitable.

onkeyup Called when a key is released while an element has the focus.
onfocus Called when an element receives the focus either by clicking with the mouse or by using the TAB 

key.You might use this event to highlight the element or display some help text.
onblur Called when an element loses the focus either by a user clicking on another element or by pressing 

TAB.You might use this to verify information or close popups. It is better to verify fields when the OK 
button is clicked however.

onload Called on a window when it first opens.You would usually add this event handler to a window tag in 
order to initialize a window.This would allow fields to be set to default values based on conditions 
contained in a script.

onunload Called when the window is closing.You would usually add this to the window tag to record 
information before the window closes.

XUL events



all of our functionality inside
the ‘onclick’ quotation marks.
What do we do if we need to
perform some clever maths,
expansive processing or other
such programming magic that
would require a lot of code to
be written? The answer is we
make our own function.

A function is a block of code
that can be called into action
by another piece of code. You
can think of a function as a
book inside a library. You may
be reading another book and
not understand a particular subject, so to
understand the subject you will pick up
another book to explore it further. A
function basically allows you to package
together in code a complex chunk of pro-
gramming code and access it with a
single line. Although functions can be
quite complex and handle much func-
tionality, they can also be simple. We
will explore our first use of functions in
Javascript with a very simple example.

To use functions, it is recommended
that you put all of your functions in a
separate file and access the file from
your XUL script. To begin, we need to
create a file called functions.js and add
the following code:

function func_showdialog()
{
alert(“This is a function!”);

}

This code contains a number of key ele-
ments. The first line says that we are
creating a function (‘function’), and that
we want to call it func_showdialog. The
empty brackets are also used to indicate
that our function does not process any-
thing. A common feature of functions is
that you can pass them information in
the brackets, and they will process the
information and give you a result. With
our function here, we are simply running
the code inside it, and not processing
anything, hence the empty brackets.

The curly brackets indicate the extent
of the function. The code within the
function begins after the { symbol and
finishes before the closing } symbol. In
our current function we have one line
that gives us a familiar alert dialog box.
An important point to note is the semi-

colon at the end of each statement inside
the programming function; this semi-
colon is used to indicate the end of a line
in Javascript.

Linking together
With our function complete, we are now
ready to connect it to our main XUL
code. We first need to load the func-
tions.js file into our XUL file as a source
of scripting code. To do this, we use the
<script> tag inside the <window> tag
to specify the source of the file. In addi-
tion to this we will also need to change
the content of the button’s onclick
attribute to our function name. To clarify
these additions, the full code is shown in
Listing 2:

expected. Our first step is to now add an
event handler to the button to specify
what kind of interaction we want to
respond to. Each event is triggered by a
special handler that specifies the type of
interaction that we are dealing with. The
XUL events table is a list of the currently
supported events that are available in
XUL (this list is taken from XULPlanet.
com).

Button Power
We will begin by exploring one of the
most common event handlers; ‘onclick’.
To add this handler, you need to add
‘onclick’ to the line of code that creates
the button, and then specify what should
happen. Change the button code to this
line:

<button id=”name” label=”My butU
ton” onclick=”alert(‘hello’);”/>

In this code we are adding the ‘onclick’
handler, and inside the quotation marks
we say what we want the handler to do.
In this simple example we are using the
Javascript ‘alert’ function to pop up a
dialog box with the word hello inside it.
If you now save the code, reload the
page and click on the button, you will
see the resulting box pops up when you
click on the button with your mouse.

Getting all functional
As you can see from our first example,
connecting functionality to a widget is
quite simple. Despite this simplicity, we
face the problem that our code is going
to get very long and confusing if we put

68 September 2004 www.linux-magazine.com

Mozilla XUL: Making InterfacesPROGRAMMING

01 <?xml version=”1.0”?>
02 <?xml-stylesheet

href=”chrome://global/skin/”
type=”text/css”?>

03
04 <window
05 id=”test-window”
06 title=”Test Program”
07

xmlns=”http://www.mozilla.org/
keymaster/gatekeeper/there.is.
only.xul”>

08
09 <script

src=”functions.js”/>
10
11 <button id=”name”

label=”My button”
onclick=”func_showdialog();”/>

12
13 </window>

Listing 2: Full code

Figure 1: Our first Javascript enabled script.

One of the biggest questions that people
ask when looking into XUL is if there are any
other languages available for writing XUL
scripts. At the current time, the only lan-
guage that is supported is Javascript, but
other languages are being discussed for
future releases of Mozilla.These languages
could include Python, C#, and others. Many
of these discussions are based around the
creation of the next level of Mozilla applica-
tion functionality; the Mozilla Virtual
Machine. For more information on the
progress of the Mozilla project, we recom-
mend you visit the Mozillazine (http://www.
mozillazine.org/) and Planet Mozilla (http://
planet.mozilla.org/) websites.

Other languages and XUL



69www.linux-magazine.com September 2004

PROGRAMMINGMozilla XUL: Making Interfaces

log box. To do this we need to
communicate with the textbox,
get the information, and put it
into an alert box.

In the first line of code in the
function, we are creating a new
variable called ‘info’. To do this
we use the ‘var’ keyword to indi-
cate that ‘info’ is a variable. For
those unfamiliar with variables,
a variable allows you to store
information in the computer’s
memory and refer to it with a
name. You can think of a vari-
able as a cardboard box with a
name written on the side. If you put
something in the box, you can then refer
to it by the name on the side of the box.
In this case, the name written on the side
of the box is ‘info’.

On the same line as our ‘var info’ code
we also set the contents of the variable
with the code on the right-hand side of
the = sign; this is the code that actually
gets the information from the textbox.
Within the code we use the getElement-
ById feature of Javascript to access the
widget with the id of ‘textbox’, which is
our textbox.

You will see that the getElementById
function is written right next to the ‘doc-
ument’ word. The way this works is that
‘document’ refers to our main XUL docu-
ment and the widgets that are included
on it.

Period
The period sign (.) indicates that the
code on the right of the sign should be
applied to the code on the left of the
sign. In this case we look for a widget
with the id ‘textbox’ within our main
document. With this line complete, we
now have the contents of out textbox
stored in the ‘info’ variable.

This concept of using periods to indi-
cate where we are applying a function is
a common feature in many programming
languages. We use this concept again in

our second line when we use the ‘value’
function to get the value from our ‘info’
variable. We nest this code within an
alert function to display it in a dialog
box. Note how we do not use double
quotes in this alert box code; you only
use double quotes when you are printing
out text (called a string) to the alert box.
In our alert box, this time, we are print-
ing the contents of a variable.

Conclusion
In this issue we have made some impor-
tant first steps towards making a
functional XUL interface. We still have
some way to go, but these foundations
will make our future scripts easier to
understand and write. It is always impor-
tant to have a clear understanding of the
core fundamentals before we continue
along the path.

In the next issue we are going to push
forward and write some more elaborate
functions and features to tie together dif-
ferent parts of our XUL interfaces. Until
then, have a good look through the code
again and try to understand as many of
the core concepts discussed today as you
can. If some things are confusing, don’t
worry; we will be exploring many of
these concepts in better detail in future
issues. Good luck! ■

The main reason why I reproduced the
entire code here was to demonstrate the
correct placement of the new code. If
you were to put the <script> tag below
the <?xml> tags (a common mistake
for those who think that the script
applies to the entire file) you would get
an error and your efforts would go to
waste. You need to ensure that the script
is within the <window> tag.

Exploring the DOM
We will now step forward and explore
the DOM a little more. To get started we
will create some new code. Call this file
second.xul, and add the following code
as seen in Listing 3 below:

In this code we have two main graphi-
cal elements; a text box and a button. It
is important to note how each widget
has an ‘id’ attribute that gives it a unique
name. You should ensure that this
attribute is both unique and easy to
remember as we will be referring to wid-
gets by this name. In our code we have
also changed the name of the function to
func_getinfo() as well as the name of our
functions file in line 9 to second.js.

The next file to edit is second.js. Add
the code shown in Listing 4 at the bot-
tom of this page. This is the code where
the real action happens. The aim of our
script is that the user can type something
into the textbox, and the contents of the
textbox will be displayed in an alert dia-

01 <?xml version=”1.0”?>
02 <?xml-stylesheet

href=”chrome://global/skin/”
type=”text/css”?>

03
04 <window
05 id=”test-window”
06 title=”Test Program”
07

xmlns=”http://www.mozilla.org/
keymaster/gatekeeper/there.is.
only.xul”>

08
09 <script src=”second.js”/>
10
11 <textbox id=”textbox”/>
12 <button id=”showinfo”

label=”Show Information”
onclick=”func_getinfo();”/>

13
14 </window>

Listing 3: second.xul

Figure 2: Using the DOM to connect our widgets together.

01 function func_getinfo()
02 {
03 var

info=document.getElementById(‘
textbox’);

04 alert(info.value);
05 }

Listing 4: second.js

Jono Bacon is a
writer/journalist, con-
sultant and developer
based in England. Jono
has been actively
involved with Linux
since 1998 and has
worked on a number of
different projects including KDE,
KDE::Enteprise, KDE Usability Study,
Kafka and Linux UK.You can find his
website at http://www.jonobacon.org.

TH
E 

AU
TH

O
R


