
tion. The same also applies to the vari-
ous websites I run.

On my websites, I am frequently
caught between the desire to add new
features, and wanting to add new con-
tent. For several years, I have been been
working on the Linux Tutorial [1]. Origi-
nally, it consisted of a set of static HTML
pages, the bulk of which came from my
book “Linux User’s Resource”. As I con-
tinued to work on the site, I came to
realize that providing static pages was
not enough and I began adding features,
eventually creating a very simplistic, yet
modular, portal system. This included
pop-up glossary terms, a Linux quiz with
over 500 questions and answers, and a
number of other features to help people
learn Linux more easily. I eventually
reached the point where I was spending
more time writing code to add new fea-
tures than I was spending on adding new
content. The exact opposite of what I
wanted.

I didn’t want to simply leave the site as
it was, as some of the features I wanted
would enhance the usefulness consider-
ably. Making it an open source project
and posting it to SourceForge got me
quite a few volunteers, but most disap-
peared within a few weeks because of
“other commitments”, never having
written a line of code. Some did help, but
progress was slow. So, I had to write
most things myself. What I needed was
something that gave me the features I
wanted now, thus letting me begin
adding content again. It also meant I had
to find a portal system that would allow
me to easily integrate my existing mater-
ial (as I didn’t want to spend as much
time porting my code to the portal as I
would coding the new features).

Once the decision was made, I began
my search. In addition to the necessary
features and ease of porting my code, I
needed something that had enough sup-
port to help me when I ran into trouble.

For some, simply being on the Inter-
net is enough. They toss a few
more or less coherent pages

together and that is their Internet "pres-
ence". For others like me, it has to be a
lot more. We strive for a professional
looking website with professional con-
tent, hoping to give a little something
back to the community that has given us
so much. Reaching that point is not
always easy. However, it can be if you
find the right tools to help you achieve
that goal.

My Search for the Holy Grail
In my department at work, I am often
referred to as the “script grandpa” as I
can usually come up with a script to per-
form almost any task. Be it a shell script
or perl, I can normally figure out some-
thing that does the job.

However, given a choice between writ-
ing code and writing documentation, I
actually prefer writing the documenta-

For anyone who wants to quickly set

up their own portal web site, PHP-

Nuke offers easy installation and

powerful features. Coupled with a

load of add-ons and an extensive

support network, PHPNuke is the

right choice for inviduals, clubs and

even businesses. In this article we

show you how to set up just such a

system for your own use and tell you

about the problems and worries of

the PHPNuke system.

BY JAMES MOHR

The Drag-n-Drop Portal System

Beyond the Portal

48 September 2004 www.linux-magazine.com

PHPNuke: Installation & ConfigurationKNOW HOW

Peter W
underlich,Faido,visipix.com

Amazingly enough, the search did not
last very long as I quickly came across
PHPNuke [2].

The Good, The Bad and
the Ugly
One thing that put me off at first was the
fact that, as it’s name implies, PHPNuke
is written in PHP. With the exception of a
very brief introduction a couple of years
ago, I had no real previous experience.
Was I going trade the extra time spent
coding for extra time spent learning a
new programming language? Fortu-
nately, the answer is a resounding “No!”
Although not identical to perl, the con-
structs are very similar to perl and
porting my code was amazingly simple.
In fact, within a couple of weeks I had
my site ported. Well, at least on my test
system.

The next step was to begin implement-
ing the features that I had been wanting
to add for several years. Still, in order to
put together a useful site with PHPNuke,
you do not need to be a good program-
mer. In fact, you don’t need to be a
programmer at all. PHPNuke provides so
many features simply by installing it that
there may not be any need to add any-
thing else.

Just some of the features available
include:
• User management (including paid sub-

scriptions)
• Forums
• User contributed news
• Surveys
• User contributed Web Links
• Downloads
• Newsletter
• Encyclopedia
• Journal
• Reviews
• Statistics
• Feedback
Features are nice, but are often useless if
you don’t know how to implement them.
The PHP-Nuke_HOWTO, available on
the PHPNuke site [2], is a great piece of
work, covers all of the important fea-
tures, and is loaded with specific tips
and tricks. Although it goes into the
inner-workings in a few places, I feel
that it is lacking real depth.

The lack of in-depth documentation is
compounded by the fact that there are
almost no comments in the code. The

only comments I have found so far are
the copyright notices at the top of each
file. That means you often have to do a
lot of footwork when trying to modify or
use existing code.

One thing I that feel borders on “ugly”
is the attitude toward security. PHPNuke
has a reputation for not being secure.
Almost every software product has secu-
rity bugs and PHPNuke has gone a long
way in fixings, plus there are a number
of add-ons that really enhance the secu-
rity. However, it does seem that the
developers are more interested in fea-
tures and not security.

The one thing that really bothers me is
a comment by Francisco Burzi (devel-
oper of PHPNuke) in the article
“Clarifications on a possible rewrite of
PHP-Nuke” available on the phpnuke.org
website:

“The new code will be closed. This
means that script kiddies should get a
computer science master or PhD before
hacking it. This will reduce the security
issues.”

To me that sounds like a very
Microsoft attitude toward security. Secu-
rity by obscurity has never been a good
thing. Further, the “closed” code of
which he speaks is described just the
way it sounds, and future versions may
not be open source.

A Quick Look Inside
For me, one of the most significant
aspects of PHPNuke is it’s user manage-
ment capabilities. On many sites, certain
features are only available to registered
users. For example, in order to post to
their forums, you need to be registered.
PHPNuke implements this in a very logi-
cal and efficient manner. Users simply
fill out a forum with their username,
email and password, and PHPNuke
immediately sends them a confirmation
email containing a link back to the site.
Clicking on the link activates your
account.

This method is important for two rea-
sons. First, it prevents a person from
signing up someone else without their
knowledge. Second, if the user really
wants to sign-up, he or she has to do it
in two steps. This is useful for the site
owner as a verification that the user
really wants to join. (often referred to as
double opt-in) This becomes important

when using the newsletter feature so
that you don’t get accused of spamming
your users.

Officially, PHPNuke can be installed
on Windows or Linux, but is also being
run on FreeBSD, OS/2, and even MacOS.
The key conditions are that you have
have an Apache web server with PHP
version 4.2.x or better, and have the
mod_php Apache module installed. In
PHP-Nuke version 5.3, an SQL abstrac-
tion layer was added, which means that
PHPNuke should work with MySQL,
mSQL, PostgreSQL, ODBC, ODBC_
Adabas, Sybase and Interbase servers.

In a nutshell, using this SQL abstrac-
tion layer, all queries are standardized
as they are passed to the SQL abstraction
layer, which then calls the appropriate
function for the database you are
using. Since MySQL is what is officially
tested and what I have used in all of my
installations, I am going to stick with
that.

A PHPNuke page is broken into five
areas: header, left column, contents,
right column and footer. What actually
appears in each of these is defined either
in the system administration module or
the various module, theme or block files.
In the left and right columns, you see
various “blocks” that the administrator
can define either as a separate PHP file
or as HTML code. The content of the
header is typically defined within each
theme, and the footer is defined in the
system preferences.

The content is created by the modules
themselves, which are the primary com-
ponents of PHPNuke. Each of the
features mentioned above is managed by
a module, for which there is a sub-direc-
tory underneath the module directory.
The actual work is done by the
index.php file within the respective mod-
ule sub-directory. With this standardized
structure, all you need to do is create a
new sub-directory and an index.php file
in order to add your own module.

When activated, modules will be visi-
ble by default in the “Modules” block on
the left hand side of the page. However,
being active does not necessarily mean
they are visible. On my site, I have a
number of modules that, although
active, are not visible in the Modules
block. However, I still access them in the
same way, like this:

49www.linux-magazine.com September 2004

KNOW HOWPHPNuke: Installation & Configuration

Despite its complexity, PHPNuke is
extremely easy to install. If you are run-
ning on a system on which you have full
root privileges, are not too worried about
security, and simply want the default
configuration, you can install PHPNuke
and get it running, literally, in less than 5
minutes. However, even on my local
machine I was not happy with the
default, so it took a little longer.

Gotcha
Depending on what version you get of
the PHPNuke package, the Install.txt file
has a little “gotcha”. It says “Unzip the
package into the directory you want to
use on your web server.” To me (as well
as many other people) this implies that
you unpack this in your server’s docu-
ment root. Unfortunately, that is not
what it does. In the case of the version
7.0 that I originally downloaded from
SourceForge, the package was actually
unpacked into a sub-directory named
PHP-Nuke-7.0. This meant having to
move everything into my web server’s
document root.

Version 7.3 the files are unpacked
directly, without a PHP-Nuke-7.3 sub-
directory. In addition to various .txt files,
there are three directories: sql, which
contains the sql script to create the nec-
essary tables (nuke.sql); upgrades,
which contain the scripts necessary to
upgrade between versions; and html,
which is the primary PHPNuke directory.

Once the file is unpacked, you need to
edit the file config.php found in the top-

level directory (usually your document
root). Here you make the necessary
changes to fit the configuration to your
environment. As an extra security pre-
caution you might want to consider
moving your config.php script from the
server’s document root. Keep in mind
that the system still needs to have the
information in that file, so you will need
to create a config.php in the document
root that includes the real config.php.
This file needs only one line:

<?php include("../config.phpU
"); ?>

I would also suggest creating a user and
password whose only purpose is to
access the database. By default the
$dbuname variable is set to root. This is
not a good idea, as root just has too
much power. Note that you will need to
give that user the necessary rights to
manage the tables.

On my local machine, I have several
web servers, including the test server for
my Linux Tutorial website. Since I
wanted to have PHPNuke on multiple
servers, and at the same time needed to
keep the instances separate, I had to cre-
ate multiple databases. This meant
changing the config.php file and the
nuke.sql file. In the config.php I set the
values as the following:

$dbname = "jimmonuke";
$prefix = "jimmonuke";
$user_prefix = "jimmonuke";

modules.php?name=MODULE_NAME

where MODULE_NAME is the module
name as well as the name of the direc-
tory where the module resides.

I use this characteristic for many fea-
tures on my site that I don’t want to
include in the menu. For example, I have
a number of “special pages” that are
only accessible from certain other pages.
Creating these pages is done using a sep-
arate module, and thus I need a module
that is invisible to the user, but still
accessible.

Also, inactive modules are still accessi-
ble by the administrator. This allows you
to test the module before you put in
online.

Where the modules are the primary
components of PHPNuke, you might
have figured out that the modules.php
script is the key to all of this. Although
the module.php does not usually create
the framework of the page or add the
actual contents, it is responsible for
ensuring that the correct module is
called. If the module can not be found, is
inactive or inaccessible for another rea-
son, it is the job of the module.php file to
display the appropriate message.

Getting Ready to Launch
The first step is getting a copy of PHP-
Nuke. As of this writing, the current
version is 7.3. However, this version is
not yet available to the general public. In
order to download it, you need to pay a
small fee. For this article, I purchased a
copy to make sure I was as current as
possible.

Prior to the public (read: free) release,
the developers typically release a version
which is only available by paying this
small fee. It costs about $10(US) plus tax
(£5.40, 9.92 Euros). Since I think this is a
great product, I have no problem sup-
porting development like this, especially,
since I get a copy of the latest version
before other people. It did take about an
hour for the order to go through its chan-
nels before I was actually able to
download the file, but that was an
acceptable wait.

If you don’t want to pay the fee, you
can download the prior version directly
from the PHPNuke homepage: www.
phpnuke.org. This is done by clicking
Download from the main menu.

50 September 2004 www.linux-magazine.com

PHPNuke: Installation & ConfigurationKNOW HOW

$dbhost – This is the name of the host where
the database is running. Leave it as “local-
host”if it is on the same machine as your
PHPNuke installation.
$dbuname – This is the name of the user
used to access the database. If you configure
this on a Web hoster, you will likely have a
user other than root. Check with your hoster
for details.
$dbpass – This is the password for the user
above.
$dbname – The default is “nuke”, but with
many web hosters you may have to add a
prefix like “USERNAME_nuke”. For security
reasons, I would always change this.
$prefix – This is the prefix for the database
tables. Here too, I would always change this
for security reasons.

$user_prefix – This should be the same as
$prefix. However, you could have multiple
PHPNuke servers sharing a common user
database. In which case the $user_prefix
would be the same for each of the PHPNuke
servers.
$dbtype – Sets the database type. For MySQL
it must be “MySQL”.
$sitekey – This is the site key and used to
generate the security images when logging
in. It can be as long as you want.
$gfx_chk – This defines when the security
code image is displayed. If 0, it means the
code is never displayed, 7 means always.
Having the code basically prevents auto-
mated logins, so I always set mine to 7 on
live systems.

Box 1: Parameters in config.php

See Box 1 for a brief explanation of each
field.

Then, in the nuke.sql script I had to
change all of the references from nuke_
to jimmonuke_. (Watch out for the
underscore!)

Next we create the database. Since I
defined my database with a name other
than the default, I can not use the exam-
ple in the Install.txt file. Instead, I
needed to create it like this:

mysqladmin create jimmonuke

Depending on how your system is con-
figured, you may need to use the -p
option so that you are queried for your
password. You can run this command as
any user that has the permission rights
to create new databases. I actually cre-
ated the database as root, and then gave
privileges to my PHPNuke user for just
this one database. The SQL query looked
like this:

GRANT ALL ON jimmonuke.* to U

jimmohome identified U

by "PASSWORD"

Next you need to create the tables in the
database using the nuke.sql script as fol-
lows:

mysql jimmonuke < nuke.sql

When you connect to a site running
PHPNuke, you typically load the index.
php file in the top-level PHP directory.
You will need to set the DirectoryIndex
on your web server to index.php, so it is
loaded instead of the standard index.
html. Many web servers have both as the
default, so it may not be a problem.
Check your server beforehand to avoid
any surprises.

Taking Off
If you have done everything right,
your system is ready to go at this point.
You can now start administering your
PHPNuke system by pointing your
browser to:

http://your.site.name/admin.php

As I mentioned, on my personal site I did
not put PHPNuke into the web server’s
document root. Instead, I renamed the

default directory html to nuke and
copied this into my document root.
Therefore, I access the admin page like
this:

http://your.site.nameU
/nuke/admin.php

When you call up the admin page for the
first time, you are asked to create a user
to act as the administrator. You also have
the option of creating a “normal” user
with the same data as for the admin user.
My personal preference is to create a dif-
ferent user for a couple of important
reasons.

First, it helps me keep track of who is
doing what. I can log in as normal user
to see how the system behaves as a nor-
mal user, which avoids issues with
having more privileges. Second, more
than likely I will want to post messages,
news, or whatever and the username
shows up for that user. If you also have
an administrator with the same name,
people immediately know the name of
the administrator user. Not that this is an
immediate problem, but the less others
know about the inside of your site the
better.

After creating an administrative user,
you are taken to the administration page.
Here, you configure not only the basic
behavior of your PHPNuke system, but
also which blocks and modules are dis-
played.

I would suggest that the first thing you
do is to configure the basic system by
clicking on the button labeled “Prefer-
ences”. Here you define things like the
site name, various defaults, footers and
so forth.

After you have made your changes,
press the “Save Changes” button at the
bottom of the page. Next, select the
“Modules” button. Here, you manage the
modules that have been configured for
your system, such as specifying which
modules are active, who can see them,
which one is the default, and so on.
You’ll notice that about half of the mod-
ules are set to “inactive” by default,
which means this module will not
appear in the list of modules in the left-
hand column.

On live systems, I suggest removing all
modules that you are not using. If you
are not using them, you may not be as

aware of security holes and may not cor-
rect them, thus perhaps giving someone
access to your system. The default mod-
ules cannot be called directly, and the
modules.php script prevents inactive
modules from being started. However,
removing them completely is a little
more secure. Also I feel that you should
practice using any of the modules on a
test system just to be sure, before you
make them live.

You will see that one of the modules is
highlighted; this is typically the news
module. The highlighting defines which
module you see on the homepage. By
default, this is the news module.

Locking it down
As I mentioned before, PHPNuke does
not have a reputation for being secure.
This is not to say that the system is full
of holes. However, there are number of
things that you should do.

First check out the security forums on
NukeCops [3]. Here you will find discus-
sions of specific problems and how to fix
them, as well as forums for several secu-
rity addons. Next, check out the
NukeFixes [4] site. They have patched
versions of every version since 6.0. We’ll
be talking more about security issues in
follow-up articles, but this will give you
a good start. ■

51www.linux-magazine.com September 2004

KNOW HOWPHPNuke: Installation & Configuration

[1] Author’s PHPNuke system:
http://www.linux-tutorial.info

[2] PHPNuke: http://www.phpnuke.org

[3] NukeCops: http://www.nukecops.com

[4] NukeFixes: http://www.nukefixes.com

[5] PHPNuke forums:
http://www.nukeforums.com

[6] Resources for PHPNuke:
http://www.nukeresources.com

INFO

James Mohr is
responsible for the
monitoring of several
datacenters for a
business solutions
provider in Coburg,
Germany. In addition
to running the Linux
Tutorial web site (http://www.linux-
tutorial.info), Jim is the author of
several books and dozens of articles on
a wide range of topics.

TH
E

AU
TH

O
R

