
that is the memory where the BIOS
stores its data, to allow direct editing of
the wakeup time. Of course, this
assumes that you find the right memory
location, and that your BIOS actually
notices that the values have changed.
The third method, settime, uses a simple
trick. The BIOS always wakes up at the
same time and date, and the computer
clock is reset to a specific date just
before you shut down the machine.

ACPI – the Secret Weapon?
ACPI is probably the easiest way to
switch on a computer at a preset time,
that is, assuming that the kernel sup-
ports your choice of motherboard. If this
is the case, then you can simply store the
wakeup time for the system in
/proc/acpi/alarm:

echo 2004-08-02 20:15:00 >/procU
/acpi/alarm

The kernel transfers the time directly to
your computer’s RTC (real time clock),
but not the date. This leads to the com-
puter waking up at the same time every
day, and not just on the given date.

The problem is that there is a more-or-
less standardized method of transferring
the time to the RTC, but no such stan-
dard for the wakeup date. Consequently,
the acpi_system_write_alarm functions
in drivers/acpi/system.c for the kernel
2.4, or drivers/acpi/sleep/proc.c for the
kernel 2.6, only support the alarm time
fields.

Out of Date
Kernel developers Andy Grover and Paul
Diefenbaugh have already prepared the
way for the full functionality, but they
need a usable fixed ACPI table (FACP). If
you check out the comments in the ker-
nel code, you will note that the current
FACP tables for motherboards are unser-

viceable, and this
has led to the code
block being per-
manently
disabled.

The various
motherboards pose
a variety of prob-
lems. Some
motherboards do
not pass the time
correctly to the
computer’s RTC,
storing the last
boot time instead
of the desired
wakeup time. Oth-
ers immediately
crash when an

Servers need to run 24 by 7, as do
RAID systems. Most users tend to
leave their desktops running when

they leave the office in the evening,
although computers are rarely needed
for more than 10 hours per day. For spe-
cial applications, like fax servers that
send out fax messages at 2 o’clock in the
morning, why not boot the machine just
before two and switch it off again for the
day until the next nocturnal session is
due?

Implementing these scenarios is quite
simple. All you need is a time switch for
a couple of dollars to switch the
machines on and off as needed. Things
start getting expensive if, as a normal
user, you do not have access to the time
switch in the data center. In this case
expensive power switches and a com-
puter-based controller are typically the
only viable solution.

The BIOS on your computer’s mother-
board will typically allow you to wake
up your computer without additional
hardware. More or less any modern
machine should have a function for
time-controlled booting, and let’s not
forget the additional “Wake on LAN”
and “Wake on Ring” functions that allow
a desktop to wake the server whenever it
needs to do so.

The problem is how to change the
wakeup time for time-controlled power
up on Linux – different manufacturers
and BIOS revisions mean applying differ-
ent approaches as no one method is
ideal for all. For example, ACPI wakeup
does not work on many motherboards
due to different implementations of the
standard. In contrast to this, NVRAM
wakeup can use non-volatile memory,

Switching computers that do not need to run 24 by 7 on and off as required can

cut your power consumption. In this article, we will be looking at three differ-

ent methods of programming a wakeup time under Linux without needing to

set the time manually in the computer’s BIOS. BY MIRKO DÖLLE

Programming a wakeup service for your computer

Wakeup Call

60 September 2004 www.linux-magazine.com

WakeupSYSADMIN

w
w

w
.photocase.de

Figure 1: Most computer BIOS chips have a wakeup function called RTC Alarm
Resume or something similar.

attempt to write to /proc/acpi/alarm is
made. ACPI wakeup works with many of
the current crop of motherboards. You
can checkout the distribution section on
the LinVDR (mini video recorder) distri-
bution homepage for a non-exhaustive
list [1].

Topsy-Turvy
If you want to use ACPI to wake up your
computer, you need to ensure that its
BIOS settings are correct. For years now
most computers have had BIOS func-
tions called Wake on Timer, Resume on
Alarm, RTC Alarm Resume or similar
variations on the same theme. This said,
users were expected to set the time in the
BIOS. ACPI wakeup uses a similar tech-
nique, but it does not use the BIOS
function. This is why you will need to
disable the BIOS wakeup function on
most motherboards if you want to use
ACPI. Also, note that the time for the
next time-controlled power up will not
be displayed in the BIOS.

Yet another hurdle: there are a few
motherboards, such as the Asus A7V133,
that do not take kindly to a shutdown
script using hwclock -w to synchronize
the RTC with the system time after enter-
ing the wakeup time. The computer
simply does not wake up again. You
need to set the --directisa flag when call-
ing hwclock, or as an alternative, you can
set the wakeup time after calling
hwclock.

Groundhog Day…
As previously men-
tioned, ACPI wakeup
tells the computer to
wake up every day at
the preset time, and this
does tend to restrict the
usefulness of the func-
tion. ACPI wakeup
would be quite useful
for a fax server that
automatically processes
fax messages every
night before switching
off again. ACPI wakeup
is also quite useful for
PC video recorders
(PVRs), such as VDR for
example. Most channels
update their electronic
program guides (EPGs)

between midnight and two in the morn-
ing, so booting the machine at two
o’clock would allow you to perform an
EPG scan to support automatic timer
programming.

However, a print server that boots at 9
in the morning and powers down at 7 in
the evening would be up and running for
10 hours on weekends. An additional
routine in the startup scripts that recog-
nizes weekends and public holidays
could shut the machine down, but this is
only a stopgap solution. Although you
might need to use the print server on the
weekend, it would still shut down, even
if you booted it manually.

A script that checks for weekends and
public holidays when shutting down the
computer, and programs the wakeup
time and date, is a far better solution.
NVRAM wakeup and the settime method
provide the answers.

NVRAM Wakeup
NVRAM wakeup uses the BIOS settings
stored in non-volatile RAM (NVRAM).
The nvram kernel module allows Linux
to access a maximum of 128 bytes of
non-volatile memory.

To get this to work, you need to com-
pile the nvram kernel module, and also
create the character devices /dev/nvram
with a major of 10 and a minor of 144,
/dev/rtc with a major of 10 and a minor
of 135, and /dev/mem with a major of
1 and a minor of 1. You also need to

modify the /etc/modules.conf module
configuration file to tell your computer
to load the NVRAM module when
/dev/nvram is accessed or immediately
on booting.

Using BIOS Functions
There are no tricks to watch out for
when building the program from the
source code (available at [2]). The
default installation path is /usr/local, but
admins can edit the Makefile to change
the path to /usr if needed. If the
/dev/nvram, /dev/rtc, and /dev/mem
devices do not exist at this point, make
devices will automatically create them.

In version 0.96, the tr statements in
lines 62 and 75 of the helper script guess-
helper.sh do not work:

answers=`$echo $answers | U

tr [:lower:] [:upper:]`

Fortunately, the script worked fine after
adding four backticks

answers=`$echo $answers | U

tr '[:lower:]' '[:upper:]'`

For most manufacturers, the way they
allocate the NVRAM is a big secret – you
might have some difficulty finding out
where the date and time are stored for
lack of documentation. What’s worse,
the memory locations tend to be a mov-
ing target that changes whenever you
update the BIOS.

The NVRAM wakeup sources include
specs for a number of boards. These
details come courtesy of the guess-
helper.sh script. Running nvram-wakeup
with the -D flag launches the program in
debug mode, and tells you if your moth-
erboard is known. If nvram-wakeup tells
you that

nvram-wakeup: Your motherboard U

is currently not supported.

however, you will need to run guess-
helper.sh.

The guess-helper.sh script tries to
locate the position of the NVRAM mem-
ory fields. You will need to boot your
computer at least four times to do this.
The first time you boot, you need to dis-
able the BIOS wakeup function, set the
time to the 31st of the month at one

61www.linux-magazine.com September 2004

SYSADMINWakeup

01 ##############################
02 ## motherboard autodetection information:
03 ##
04 ## - motherboard vendor: ""
05 ## - motherboard type: "VT8367-8235"
06 ## - motherboard revision: ""
07 ## - BIOS vendor: "Award Software

International, Inc."
08 ## - BIOS version: "6.00 PG"
09 ## - BIOS release: "04/07/2003"
10
11 addr_stat = 0xD2
12 shift_stat = 5
13 addr_day = 0xD8
14 addr_hour = 0xD9
15 addr_min = 0xDA
16 addr_sec = 0xDB
17
18 upper_method = VT8235_37

Listing 1: nvram-wakeup.conf

for the computer to boot. Figure 1 shows
the output for nvram-wakeup. The top
section of Figure 1 shows the wakeup
data that nvram-wakeup located in the
NVRAM; the bottom value shows the
data that would have been program-med
without the write protect parameter, -N.
The values match, so we can assume
that guess-helper.sh really has located the
right memory cells.

The next step is to set a date about 15
minutes in the future, and then shut the
computer down:

nvram-wakeup -s `date -d "+15 U

Minutes" +%s` -A -C /etc/nvramU
-wakeup.conf
poweroff

If your computer does not wake up as
expected, this may be due to a basic
APM/ACPI problem, or your computer
may need to run the BIOS routine once
more – that is reboot – to wake up at the
preset time.

Reboot not Shutdown
There is a very easy way to find out
if you are facing the so-called reboot
problem. Set a wakeup point for the

next full quarter hour, and
type reboot to restart your
machine. Then set a wake-
up time for the next full
quarter hour and enter
poweroff to power the com-
puter off.

If the BIOS wakes up at
the next full quarter hour, it
has successfully read its
BIOS to support wakeup.

For some motherboards
the memory size accessible
to /dev/nvram, as defined in
the nvram module, is too

small to access the whole NVRAM area.
Cases where guess-helper.sh is unable to
locate the day, hour, minute, and second
positions, or only finds a few fields, are
indicative of this issue. The kernel
sources define the memory size in
drivers/char/nvram.c:

#define NVRAM_BYTES U

(128-NVRAM_FIRST_BYTE)

You need to extend the size to a full 128
bytes:

#define NVRAM_BYTES 128

This change may help guess-helper.sh to
locate the necessary fields for your par-
ticular motherboard.

Back to the Past
settime is an ingenious method that is
guaranteed to work with any mother-
board. The idea is to program a fixed
wakeup time in the BIOS, for example
day 31 of the month at 23:59:59.

When you shutdown your machine, a
script calculates the time vector between
shutdown and wakeup, subtracts this
vector from say July 31 2004, 23:59:59

and sets the system and
RTC time to an appropri-
ate day and time in July
2004. The next time you
boot your computer, you
only need to correct the
time setting for every-
thing to be as it should
be.

In practical applica-
tions this approach can
be a bit tricky. You have
to ensure that the cor-

second to midnight, and then call guess-
helper.sh. Then set the wakeup time to
11th of the month and the time to
12:13:14, then to the 1st of the month,
midnight, and finally disable the wakeup
function again.

Each time the wakeup point is called,
guess-helper.sh compares the content of
the NVRAM with the other calls to estab-
lish the memory locations for wakeup
points. guess-helper.sh uses two methods
to do so: access via /dev/nvram and
direct I/O address access. This results in
two configuration files, nvram-wakeup.
conf in the guess-nvram-module direc-
tory, and guess-directisa below root‘s
home directory.

Positioning Information
A quick look at the configuration files
shows us where comments about the
motherboard, and address information
are stored. In the case of the Elito Epox
8K5A2+ board, the /root/guess-nvram-
module file was empty apart from a few
comments, whereas the /root/guess-
directisa contained the address entries
shown in Listing 1.

If both configuration files are empty,
you can assume that guess-helper.sh was
unable to locate the addresses.

You need to tell the program the path
to the configuration file, using the -C
parameter to do so, whenever you call
nvram-wakeup. Also, the -A parameter is
required in this case, as we will be using
the I/O addresses for direct access rather
than the /dev/nvram device. Both these
parameters can be left out if you have
a motherboard that nvram-wakeup
supports.

Trial Run
For our trial run with nvram-wakeup, we
need an arbitrary wakeup time in the
BIOS; we will be using
nvram-wakeup to vali-
date the results.

In the following exam-
ple, the BIOS is set up to
wake up the computer at
20:15 on the 15th of the
month. The date for the
nvram-wakeup call also
needs to consider the
time vector between
local time and UTC, and
allow about five minutes

62 September 2004 www.linux-magazine.com

WakeupSYSADMIN

01 #!/bin/bash
02 BiosWakeup="2004-07-31 23:59:59"
03 Wakeup=`date -d "$1" +%s`
04 Now=`date +%s`
05 Bios=`date -u -d "${BiosWakeup}" +%s`
06 Diff=$[${Wakeup}-${Now}]
07 echo "$[${Now}-${Bios}]" > /etc/timediff
08 date -u -s "${BiosWakeup} ${Diff} seconds ago" >/dev/null
09 hwclock -w --utc

Listing 2: Excerpt from settime

Figure 2: For a successful trial run, the values displayed by nvram-
wakeup need to match. The wakeup time set in the BIOS is
shown at the top; the bottom value shows the value as parsed by
the program.

rect time is set, whenever you boot the
machine, and before fsck executes – this
could prevent disk checks from taking
place otherwise. If you correct the time
before fsck executes, there is nowhere to
make a note of the fact, as you will only
have read access to the partitions.

Dual boot systems with Windows, or
some other operating system, are tricky
too, as they would wake up with the
wrong time and date. Additionally, this
method only makes sense if you boot the
machine at least once every two months.

Delta T
Two separate scripts provide the answer:
settime calculates the time vector
between the actual and wakeup times,
stores the difference in a file called
/etc/timediff, sets the system time to a
date in July 2004, and synchronizes the
RTC [3]. When you boot the system, cor-
recttime is called in the first init script,
reads the time vector, corrects the system
time, and synchronizes the RTC. This
ensures that your other start scripts will
not even notice the time shift.

The settime method relies on the fact
that the RTC continues to keep normal
time. This removes the need to synchro-
nize the system time with another
system, or use an accurate clock when-
ever you boot. All you need to know is
the number of seconds that the clock has
lost in comparison to real time.

Also, there is no need to perform com-
plicated date calculations including leap
years; date has all the functions you
require. For example,

date -s "+3600 seconds"

sets the system clock forward one hour.

To go back to the past, try the following
instead:

date -s "3600 seconds ago"

Additionally, date can convert dates in the
international standard notation, which is
seconds since the epoch, as follows:

debian:~# date -d "2004-08-31 U

23:59:59" +%s
1093993199

The rest is easy. Listing 2 shows an
excerpt from the settime script. Line 3
converts the wakeup time to seconds
past epoch, line 4 establishes the current
date in seconds past epoch, and line 6
uses these values to calculate the time
vector in seconds.

Line 5 of Listing 2 calculates the
wakeup time set in the BIOS, one second
to midnight on July 31 2004 in this exam-
ple, in seconds past epoch, allowing line
7 to calculate the difference to real time
and store the value in /etc/timediff. Now,
the next time the system boots, correct-
time just has to add the difference to the
system time to obtain the real time.

Finally, lines 8 and 9 set the system
and RTC time to a value in the past. As
already seen in line 5, these times are
converted to UTC and stored. To use
local time rather than UTC for the RTC,
you need to change the three lines to
reflect your local timezone.

Correcting the Time
The settime script is only called when
required, that is when you need to
wakeup your machine at a preset time,
and immediately before shutting down.
That means correcttime has to find out if

the RTC time is the real
time, or if the computer
is somewhere in the
past. Listing 3 shows an
excerpt from correcttime.

The call to date in line
3 discovers when
/etc/timediff was last
modified, returning a
value in seconds past the
epoch. If the modifica-
tion date in line 5 is in
the future, the system
time must have been set
to a date in the past.

Alternatively, if the modification date is
in the past, the system time must be the
current real time.

In lines 6 through 8, correcttime reads
the time vector between the system and
real time from the /etc/timediff file and
adds it to the current system time, thus
taking the machine back to real time.
The real time is then transferred to the
RTC, as most distributions do an explicit
sync of the system time with the time of
the RTC somewhere in the boot scripts.

Save Energy – Save Money!
A glance at your last electricity bill
shows you just how expensive electricity
is. You can save energy. And without suf-
fering as a consequence if you put a bit
of thought into the process. Five normal
desktop PCs (150 watts each) running
day and night, as is the case in many
offices, will consume over 6,500 kilowatt
hours, or £ 800, US$ 1,500, EUR 1,200
per year. Servers are even worse, as val-
ues of 400 watts or more per unit are
quite common. A single server could
consume over 3,500 kilowatt hours, that
is add £ 420, US$ 780, EUR 630 to your
annual electricity bill.

Shutting the computers down auto-
matically at 9.00 pm, and booting them
again at 6.00 o’clock in the morning on
working days would mean a saving of
more than 3,600 kilowatt hours for the
desktops, and about 2,000 kilowatt
hours for the server. That is equivalent to
a saving of almost £ 650, US$ 1,200, EUR
1,000, not to mention the reduced envi-
ronmental pollution.

If you need your computers outside of
normal office hours, just press the power
button. Even in a server-client-environ-
ment you can shut down both the
servers and the clients – just configure
the server to use “Wake on LAN” and
use the etherwake program in the work-
station init scripts. ■

63www.linux-magazine.com September 2004

SYSADMINWakeup

[1] ACPI compatibility:
http://linvdr.org/wiki/index.php?
pagename=LinVDR-Mainboards

[2] NVRAM wakeup:http://sourceforge.net/
projects/nvram-wakeup/

[3] The settime and correcttime scripts:
http://www.linux-magazine.com/
Downloads/46/wakeup

INFO

01 #!/bin/bash
02 if [-r /etc/timediff]; then
03 Timediff=`date -r /etc/timediff +%s`
04 Now=`date +%s`
05 if ["${Timediff}" -gt "${Now}"]; then
06 Diff=`cat /etc/timediff | head -n 1`
07 date -s "+${Diff} seconds" >/dev/null
08 hwclock -w --noadjfile --utc
09 exit 0
10 fi
11 fi

Listing 3: Excerpt from correcttime

