
rate menu items that refer to different
categories of options. Finally, within
each of these categories we can click on
the menu item and show the full popup
menu with a series of options that are
related to that menu.

If we click on the File menu in a pro-
gram, we typically have New, Open,
Close, Save, Save As and other options.
As long as users are aware of the kind of
functions they need, they can select the
right menu category and access the rele-
vant option.

You should always have a clear idea of
the kind of functionality that needs to go
into a menu category and ensure that
your menus are intuitive enough to per-
suade a user to click on the right menu
category to access the needed option.

Usability has taken a back seat when it
comes to organizing menus, and the
result of this has been unrelated menu
options living in menu categories. As an
example, in Mozilla Firefox there is a
Work Offline option in the File menu.

Another example is in Microsoft Win-
dows; if you need to shutdown the
computer, you click on the Start button
and then select Shutdown. Some of you
may disagree with these examples, but
you should always be aware of usability
when creating your menus.

Creating our first menu
To start coding our first menu, you will
need to create the normal boilerplate
code that is present in virtually every
XUL file. Use the code in Listing 1.

We can now create our menu struc-
ture. The first item we need to create is a
means for our menu to be located at the
top of the screen. This container is called
a toolbox and we can add it with the
<toolbox> tag:

<toolbox>

Like other geometry management con-
tainers, the <toolbox> tag places the
code within it in a specific part of the

This month we are going to have a
detailed look at what menus are
used for and how to create them.

We will then tie together the information
from the past few issues to create a com-
plete XUL user interface. Although this
interface will not include the functional-
ity of a complete application, we will be
able to cement our knowledge of XUL by
creating a usable and practical interface.

Menus provide a means of hiding
away functionality so that it can be
accessed easily by the user. The way
menus work is quite ingenious. If we
needed to display a button for each func-
tion in an application; we would end up
with a hugely cluttered interface.

Menus have a number of different
parts. The first is the menu toolbar. This
is the space at the top of an application
window that houses the different menu
items. Within this space we have sepa-

In the first few issues of our XUL series, we have been mainly looking into the

simple basics of the language. As our journey has continued, we have explored

buttons, labels, geometry management and last month we started to connect

functionality to our interface. BY JONO BACON

Programming with Mozilla XUL

Pretty Clicks

66 October 2004 www.linux-magazine.com

Mozilla XUL: Functional MenusPROGRAMMING

original photo:M
arianne Goetti,Staefa,w

w
w

.visipix.com

01 <?xml version="1.0"?>
02 <?xml-stylesheet

href="chrome://global/skin/"
type="text/css"?>

03
04 <window
05 id="test-window"
06 title="Test Program"
07

xmlns="http://www.mozilla.org/
keymaster/gatekeeper/there.is.
only.xul">

Listing 1: first.xul

01 <?xml version="1.0"?>
02 <?xml-stylesheet

href="chrome://global/skin/"
type="text/css"?>

03
04 <window
05 id="test-window"
06 title="Test Program"
07

xmlns="http://www.mozilla.org/
keymaster/gatekeeper/there.is.
only.xul">

08
09 <toolbox>
10 <menubar id="menubar">
11 <menu id="filemenu"

label="File">

12 <menupopup
id="filepopup">

13 <menuitem
label="New"/>

14 <menuitem
label="Open"/>

15 <menuitem
label="Save"/>

16 <menuseparator/>
17 <menuitem

label="Exit"/>
18 </menupopup>
19 </menu>
20 </menubar>
21
22 </toolbox></window>

Listing 2: second.xul

screen. Another feature is that we can
add a special grippy control so that the
toolbar can be separated from the win-
dow and moved around in a separate
overlayed window. We will not use this
feature for our current menus – this fea-
ture is mainly used for toolbars.

We next need to create a menubar that
our menu entries will sit on. This refers
to the typically gray space that is behind
the menu items. We can add this by
using the <menubar> tag:

<menubar id="menubar">

Note how we have set an id for this
menu bar. This is common practice
when dealing with menus and but-
tons in XUL.

We are now ready to add a menu
item. To do this we use the
<menu> tag and pass it an id
attribute and name it with the
label attribute:

<menu id="filemenu" U

label="File">

We now need to fill the menu with a
number of items. To do this we need to
first add a special popup menu that can
contain the menu items. We do this by
using the <menupopup> tag:

<menupopup id="filepopup">

With our popup menu added, we are
now ready to add some items to our
menu. We do this by using the <menu-
item> tag to add each item in turn:

<menuitem label="New"/>
<menuitem label="Open"/>
<menuitem label="Save"/>

Something you may have noted is that
there is no id attribute for each menu.
We will be using a slightly different
method of handling which menu item is
clicked later in the series.

When you are creating your menus,
you may want to separate a single menu
into different sections. We can add
our own lines to the menu by using a
menu separator. We simply add the
<menuseparator> tag:

<menuseparator/>

Our final item can be a standard Exit
option, below the separator:

<menuitem label="Exit"/>

To end, we will add all of the closing tags
that make up our menu structure:

</menupopup>
</menu>

</menubar>
</toolbox>
</window>

Our completed file, so far is shown in
Listing 2. You can see our completed
menu structure in Figure 1, above.

Adding more menu features
One of the most common requirements
in a menu structure is a sub-menu. This
special type of menu appears when you
hover your mouse over an existing menu
entry.

To create one of these sub-menus, we
need to edit some of our existing code
and add another <menupopup> struc-
ture. We will add a sub-menu to our New
menu item and the first line to change is:

<menuitem label="New"/>

When we add a popup sub-menu, we
need to change the item that is the par-
ent of the sub-menu from a
<menuitem> to a <menu> tag:

<menu id="newmenu" label="New">

Here we have created a new menu struc-
ture, and we are now ready to add our
additional popup sub-menu:

<menupopup id="secondpopup">
<menuitem label="Template"/>
<menuitem label="File"/>

</menupopup>

Remember to add the closing tag:

</menu>

You should now see something similar to
Figure 2.

Building a complete interface
XUL shows its true power when you start
tying together a number of different wid-
gets to form a complete interface.

We are going to create a complete
interface in XUL that can be used as a

foundation for your own XUL
interfaces. We will be building this
interface from the ground up as an
information management tool.
This will involve us having differ-
ent parts of the screen dedicated
to different functions and uses.
Although we are not going to be
writing the functionality for the
interface, we will use this interface
as a basis for us starting to write a
complete XUL application.

To make the interface easier to under-
stand, we will go through each line of
code and then present the full source
listing at the end of the article.

To begin with, we will first add our
boilerplate XUL file code as in Listing 1.

This code simply specifies to Mozilla
that we are dealing with XUL and then
uses the <window> tag to create our
parent window. With this code complete
we should now specify the file that will
contain the Javascript that provides
functionality for our interface:

<script src="code.js"/>

In our example interface here, we are not
actually writing any Javascript and
purely concentrating on the XUL. If you
were writing a functional XUL applica-
tion you would need to ensure that you
specify the <script> tag as the first tag
within the <window> tag block.

Our first part of the interface to create
is our menu structure. We will begin by
specifying a <toolbox> tag to indicate
that our menu is positioned at the top of
the main window. This will ensure that
our menus and toolbars (we will cover
these later in the series) are grouped
together in the tool box:

<toolbox>

67www.linux-magazine.com October 2004

PROGRAMMINGMozilla XUL: Functional Menus

Figure 1: A simple File menu
with a separator line
included.

Figure 2: Adding a sub-menu
to a main menu is simple in
XUL.

<menuitem label="Undo"/>
<menuitem label="Redo"/>

</menupopup>
</menu>

To finish our menu structure we now
need to add the <menubar> and
<toolbox> closing tags:

</menubar>
</toolbox>

The main part of our interface is going to
comprise of a left pane with a combo
box and list box, a resizable divider bar,
and on the right we will have a main text
entry area and some other buttons. With
this in mind, we will need to have some
widgets on top of each other (the combo
box is on top of the list box for example)
and we will have some widgets sitting
next to each other (e.g. buttons). This
will involve combining the <hbox>
and <vbox> tags to group these wid-
gets together in particular ways.

We will begin by first using the
<box> tag to indicate that we are using
a box layout for all of our widgets and
then then we are going to create a
<vbox> tag which will stack our
combo box and list box on top of each
other. Each of the widgets uses flex=“1”
to stretch and take up all the space; we
use flex across our full source code:

<box flex="1">
<vbox flex="1">

Our first widgets are going to be a label
and a combo box, and we will encase
these widgets in <hbox> tags so that
they are positioned side by side. We first
create a <label> tag with the text
‘Mode’ and then we create a combo box
(this is referred to in XUL as a menu list)
with the <menulist> tag. Inside this tag
we create a number of <menuitem>

entries for each item in the box.
We have also set the editable
attribute to false for our menu list
so that users cannot change the
contents of the box:

01 <hbox>
02 <label value="Mode"/>
03 <menulist
editable="false"

flex="1">
04 <menupopup>
05 <menuitem label=

"Simple"/>
06 <menuitem label="

Advanced"/>
07 <menuitem label=

"Expert"/>
08 </menupopup>
09 </menulist>
10 </hbox>

The widget to add is the list box. To cre-
ate this we use the <listbox> tag and
add each item with the <listitem> tag:

<listbox>
<listitem label="Invoices"/>
<listitem label="Expenses"/>
<listitem label="Petty Cash"/>
<listitem label="Other"/>

</listbox>

Earlier in the code we opened a
<vbox> tag to stack our combo box
and list box on top of each other. We will
need to now close this with our closing
<vbox> tag:

</vbox>

So far, we have created our widgets that
appear on the left side of the interface. In
cases where you are clearly separating
one side of an interface from the other, it
is a good idea to use a <splitter> tag to
provide a resizable divider between the
two sides. One of the features of a split-
ter is that we can collapse one side, and
we use the ‘collapse’ attribute to specify
this as the widgets before the splitter in
the code (our combo box and list box).
We have also added a <grippy> tag to
provide a handle to move the splitter:

<splitter collapse="before">
<grippy/>

</splitter>

Next we can create our main
menu bar and place a <menu>
and <menupopup> on there.
Remember that every menu is
specified with a <menu> tag
(this tag actually adds the menu
name to the menubar) but you
also need to create the actual
popup menu (the menu that
appears when you click on the
menu item. Here is the code:

<menubar id="samplemenubar">
<menu id="filemenu" U

label="File">
<menupopup id="filepopup">

At this point we have no items in our
popup menu. Our first item, New, is a lit-
tle different because it is itself a popup
menu. To add this sub-menu we create
our <menu> and <menupopup> tags,
and then we add our <menuitem>
tags. It is important to note that although
the other entries on our File menu are
added with <menuitem> tags, the New
entry is added with a <menu> tag as it
is a sub-menu:

<menu id="newmenu" label="New">
<menupopup id="secondpopup">
<menuitem label="Template"/>
<menuitem label="File"/>

</menupopup>
</menu>

With the New menu and submenu com-
plete, we can now add the rest of our
items to the File menu. We do this with a
number of <menuitem> entries, and
we use a <menuseparator> tag to cre-
ate a line between the menu items:

<menuitem label="Open"/>
<menuitem label="Save"/>
<menuseparator/>
<menuitem label="Exit"/>

</menupopup>
</menu>

We now add a second menu to the tool-
bar. This will be the Edit menu. Again
we use the <menu>, <menupopup>
and <menuitem> tags:

<menu id="editmenu" U

label="Edit">
<menupopup id="editpopup">

68 October 2004 www.linux-magazine.com

Mozilla XUL: Functional MenusPROGRAMMING

Figure 3: A complete XUL interface.

For the widgets on the right of the split-
ter, we are going to stack groups of
widgets on top of each other. We will
first create a <vbox> tag:

<vbox flex="1">

Our first block of widgets is three but-
tons that will appear near the top of the
window. We create a <hbox> tag to
place each side by side, and then add
each with the <button> tag:

<hbox>
<button id="addbutton" U

label="Add"/>
<button id="deletebutton" U

label="Delete"/>
<button id="editbutton" U

label="Edit"/>
</hbox>

The next widget is a large text entry wid-
get. This is the kind of widget that would

be used to enter text in a text editor, so
we need to make sure that the widget
can handle more than one line of text.
We can set this with the multiline
attribute:

<textbox id="posttext" U

multiline="true" flex="1"/>

Our final set of widgets is a collection of
buttons that work in exactly the same
way as the Add, Delete and Edit buttons
that we created earlier:

<hbox>
<button id="findbutton" label=U
"Preview" default="true"/>
<button id="cancelbutton" U

label="Publish"/>
</hbox>

To complete our code, we now add the
<vbox>, <box> and <window>
closing tags:

</vbox>
</box>
</window>

Listing 3 is a complete listing of the code.
When you run this code, you should see
something similar to Figure 3.

Moving forward
In this issue we have brought together
the summary of our XUL interface build-
ing knowledge. As we continue to
explore XUL, we are going to explore the
functionality of a XUL application in
more detail, and this will also include us
using PHP to make more dynamic XUL
files.

Until we resume next month, keep
playing with the different XUL interface
tags, and experimenting with different
interfaces and combinations of widgets –
the more you experiment with XUL, the
easier you will be able to use it to solve
your problems. ■

69www.linux-magazine.com October 2004

PROGRAMMINGMozilla XUL: Functional Menus

01 <?xml version="1.0"?>
02 <?xml-stylesheet

href="chrome://global/skin/"
type="text/css"?>

03
04 <window
05 id="testwindow"
06 title="XUL Interface"
07

xmlns="http://www.mozilla.org/
keymaster/gatekeeper/there.is.
only.xul">

08
09 <script src="code.js"/>
10
11 <toolbox>
12 <menubar id="samplemenubar">
13 <menu id="filemenu"

label="File">
14 <menupopup

id="filepopup">
15 <menu id="newmenu"

label="New">
16

<menupopup id="secondpopup">
17

<menuitem label="Template"/>
18

<menuitem label="File"/>
19

</menupopup>
20

</menu>
21 <menuitem

label="Open"/>
22 <menuitem

label="Save"/>
23 <menuseparator/>
24 <menuitem

label="Exit"/>
25 </menupopup>
26 </menu>
27 <menu id="editmenu"

label="Edit">
28 <menupopup

id="editpopup">
29 <menuitem

label="Undo"/>
30 <menuitem

label="Redo"/>
31 </menupopup>
32 </menu>
33 </menubar>
34 </toolbox>
35 <box flex="1">
36 <vbox flex="1">
37 <hbox>
38 <label value="Mode"/>
39 <menulist editable="false"

flex="1">
40 <menupopup>
41 <menuitem label="Simple"/>
42 <menuitem

label="Advanced"/>
43 <menuitem label="Expert"/>
44 </menupopup>
45 </menulist>
46 </hbox>

47 <listbox>
48 <listitem label="Invoices"/>
49 <listitem label="Expenses"/>
50 <listitem label="Petty

Cash"/>
51 <listitem label="Other"/>
52 </listbox>
53 </vbox>
54 <splitter collapse="before">
55 <grippy/>
56 </splitter>
57 <vbox flex="1">
58 <hbox>
59
60 <button id="addbutton"

label="Add"/>
61 <button id="deletebutton"

label="Delete"/>
62 <button id="editbutton"

label="Edit"/>
63 </hbox>
64 <textbox id="posttext"

multiline="true" flex="1"/>
65 <hbox>
66 <button id="findbutton"

label="Preview"
default="true"/>

67 <button id="cancelbutton"
label="Publish"/>

68 </hbox>
69 </vbox>
70 </box>
71 </window>

Listing 3: Complete Listing of third.xul

