PHPNuke

Setting the Sails

We've climbed aboard and begun our
journey to distant lands, leaving
familiar shores behind. The task
seems daunting, but we have the
tools and knowledge to reach our
goal.Ajourney of a thousand miles
begins with a single step,and we
have just taken that step.

BY JAMES MOHR

espite being quick to install, PHP-
DNuke is a very powerful system
with a lot of features. Basically all
of these are useful right from the start,
but you really do not begin to appreciate

them until you start configuring your sys-
tem to more closely reflect your needs.

Testing the Water

In the first article we talked about the
basic structure and functionality of PHP-
Nuke. For many sites this might be
enough.

In this installment we will be looking
into some more details of how to admin-
ister the basic components, how they
interact and how easy it is to add your
own. Although this is probably not nec-
essary for many sites, learning some of
the details of PHPNuke’s internals will
better enable you to add components, as
well as take advantage of the functional-
ity that PHPNuke provides.

One might think of PHPNuke as a tra-
ditional “3-column” portal (which it is
referred to in many places). This typi-
cally means people forget about the
header and footer. These are two aspects
that are useful in providing information
to your visitors.

To fully understand what I mean, let’s
first talk about the concept of a 3-column
portal. Typically you have the primary

data area in the center column, with the
columns on each side providing supple-

mental information, navigation and
similar features. Often, you find addi-
tional information at the top of the page
(the header) and at the bottom (the
footer). In the case of PHPNuke, you can
configure both of these as needed.

The 3-column format that that PHP-
Nuke provides is not static. You can
easily configure it so that there are just
two columns (e.g. content and naviga-
tion). In fact, a number of themes have a
default of just two columns.

Repeating on almost every page, you
will find a number of different functions
that are grouped together. These are
called blocks and are configured in the

m October 2004 www.linux-magazine.com

PHPNuke: Easy configuration

aprasedojoyd'mmm

administration module. For the most
part, blocks appear on the sides of your
page, but you can configure blocks to
appear at the top or bottom. For exam-
ple, the modules block (list of active
modules) is in the left-hand column by
default and the login block is in the left-
hand column.

You can also change the relationship of
the blocks to each other. In figure 1, we
see an excerpt from the block adminis-
tration panel. Modules are grouped by
their location on the pages, which is
listed after the block’s name (center up,
center down, left or right). Following this
is the block’s “weight”, which more or
less means the order in which the blocks
appear. By clicking the arrows, you

change a block’s weight and thus its rel-
ative position.

When you first configure your system
and move blocks around, you will find
that blocks end up with the same
weight. This is corrected by clicking the
link “Fix Block’s Weight Conflicts”. This
does not always put things in the order
you want, but you can simply click the
arrows again to put this right.

Next, you see whether the block is
active or not, followed by the class of
user that can see the block: administra-
tors, registered users, anonymous users
and all users. Certain blocks are only vis-
ible if you are an administrator, or only if
you are a registered user. Some, like the
user login, are only visible if you are an
anonymous user.

On the right-hand side, you see the
basic administration functions, such as
activating, deleting and editing the
blocks. In this case, editing means defin-
ing things like who can see it, and so on.

At the bottom of the page (not
depicted) you have a form labeled “Add
a New Block”, which is used just for
that. Here, you define the basic behavior
of the block, where it is located and even
how long it is valid. We’ll get into the
details of adding blocks shortly.

Modules are the next key aspect of your
system. Clicking the Modules icon in the
administration panel brings you to a page
that is similar to the blocks page. The big
difference is that you do not put the mod-
ules in any particular location. Instead the
output is always in the center column.

Unlike for blocks, there is no form to
create new modules. Modules are added
by creating a new sub-directory below
the modules directory with the appropri-
ate files. Like the blocks, you can
determine which users can see the mod-
ule. We’ll also get into the details of
adding modules shortly.

Several of the other administration
options allow you to administer individ-
ual modules. One module that is very
common on PHPNuke sites is the Forum
module. Currently, PHPNuke is using a
port of phpBB. This was an important

The management of your forums is a
lot more complex than the management
of other modules. Here you need to find
the various forums, sub-forums, and so
forth. In contrast to other administrative
functions, administration of phpBB takes
place within the module itself. In other
cases, there are files in the admin/mod-
ules directory for each module.

Before you put your site online, you
should modify the meta.php file, which
contains the metatags that PHPNuke
automation adds to each page. An
important metatag for most webmasters
is the KEYWORDS tag. In general, these
are words that describe the content of
the page and are often used by search
engines when people are searching for a
particular topic. Particularly if your site
is not related to computers, most of the
words are probably not valid for your
site. Leaving the keywords as they are
makes your site appear in search results
where it shouldn’t.

The Flow of Things

As 1 mentioned before, the key file is
modules.php in your PHPNuke root
directory. When you first look at it, it
seems to be doing a lot. However, after
closer inspection you will find that most
of what it does only occurs in special cir-
cumstances, for example in case of
€erToTS.

Instead of doing the work itself, the
modules.php script calls index.php for
the respective module. Therefore, it is
extremely important that the index.php
script has the required components and
structure. This is compounded by the
fact that the theme script (e.g.
themes/Sand_Journey/theme.php) also
does some of the work.

At first this appears to be convoluted
and perhaps unnecessarily complex.
However, you need to consider the fact
that one aspect of a particular theme
might be a different header layout
(which is actually the case with some
default themes) or changes to other

PHPNuke: Easy configuration m

characteristics of the pages. So, despite
being complex, this is useful if your per-
sonal theme changes the layout, despite
complicating things a bit.

Making modifications at this level goes
far beyond the scope of this article.
Instead, we’ll stick to just the basics.

Perhaps the two most important
aspects of your module’s theme.php file
are the inclusion of the header.php and
footer.php files, to ensure that the page is
displayed correctly. The header.php file
creates the actual header, the left column
of blocks and the top center blocks. The
footer.php file creates the bottom center
blocks, the right column of blocks and
the page footer. The actual content is cre-
ated within the module itself.

A very basic simplistic module would
look like this:

<?php
$index = 1;
include("header.php");
OpenTable();
print "Welcome to PHPNuke\n";

CloseTable();
include("footer.php");
[

(Note: That the $index = I, is necessary
to ensure that the right block is
included.)

In addition to including header.php
and footer.php files, we have two func-
tions which are defined with the theme:
OpenTable() and CloseTable(). These are
what actually encloses the page content
in a bordered box. You could leave these
functions out of your module, but it
would make the pages look substantially
different than other modules.

Finally we have the the print function
and as its name implies, it simply prints
out text. The nice thing is that that this
text can also be HTML code. This means
you could create a whole page of HTML
code and simply add it as a module
using the PHP print function, something
like this:

. L. . Information [> Center Down <] |1 HTML Active All Visitors [Edit | Deactivate | Delete | Show |
faCtor n my decision to switch to PHP- Modules 4 Left 1 I FILE Active All Visitors [Edit | Deactivate | Delete | Show |
Nuke, as I had already been running Administration 4 Lett 2[4 dL [SYSTEM [Active | Administrators Only [Edit| Deactivate | Delete | Show |
phpBB for a while and I did not want to Who's Online 4 Lett 3 [& ALE [Active All Visitors [Edit| Deactivate | Delete | Show |
lose my users and their pOStS. Fortu- Search < Left 4 | 4L FILE Inactive All Visitors [Edit | Activate | Delete | Show]
nately, there is a conversion SCript which Languages < Left 5 |4k FILE Inactive All Visitors [Edit | Activate | Delete | Show]

ran flawlessly. Figure 1: Excerpt from the block administration panel.

www.linux-magazine.com October 2004 -

print "<H1>Welcome to 2
PHPNuke</H1>

This is a text module.

I hope you Tike it.

\n";

Everything within the double-quotes is
printed including the new-lines. Since
the browser interprets the HTML code,
you end up with a header and two sepa-
rate lines. Note that because PHP uses
double-quotes to delimit text, you need
to escape double-quotes in your HTML
code with a back-slash. (\”)

On the surface this appears to be a
very simplistic example (and it is). How-
ever, you can include most anything that
you normally would in an HTML page.
This might be something as simple as a
list of your favorite musicians and links
to their homepage, recipes you want to
share, and so forth.

Using this example, you would need a
single module for each new file you want
to display. Fortunately, there is an easy
way around this by taking advantage of
the fact that PHP automatically stores
variables in your query string and can
then be used in your module.

For example, let’s assume you have a
module for your recipes. It might be
accessed like this:

modules.php?name=Recipes
You could then add a variable like this:

modules.php?name=Recipes&recipe2
=chicken_soup

Now within your module file (i.e.
index.php) you can use the variable
recipe which contains the value
“chicken_soup”. Now let’s assume you
have a directory underneath your docu-
ment root called recipes, which contain
one file for each recipe. We could print
out the content of the page like this:

$file = "/document/root/recipes2
/$recipe”;
$page=join("",file($file));
print $page;

First, we assigned the path to our recipe
file to the variable $file. Since the vari-
able $recipe was passed to the PHP script
in the query string, we can automatically

access it through the $recipe variable. In
the next line, we assign the contents of
the file to the variable $page. then we
simply print out the contents of the page.
There are other ways of reading files and
outputting them. However, I have found
this to be efficient and, as we’ll see in
the next installment, very useful if you
want to process the page once you have
loaded it.

Note that these three lines replace the
print statement in our first example and
do not represent the whole file.

On the shores of your site

As I mentioned earlier, the sides of PHP-

Nuke page, have blocks of information

that typically repeat on every page.

There are three kinds of blocks:

e RSS/RDF - Display news from other
sites using a standard format.

e Text - Contain text (including HTML),
which is simply inserted into the
block.

e Script - PHP Scripts, which can per-
form most any function other PHP
scripts can.

Because of space limitations I am going

skip talking about the RSS/RDF blocks

and concentrate just on the other two.

Text blocks are good for static text that
does not change between pages. The
content of text blocks is actually stored
within the database and retrieved each
time the page is loaded.

Because script blocks can do whatever
any other PHP script can, they can also
display static text. You might think that
this a lot of extra work when you can
simply add text blocks through the
administration panel. However, I typi-
cally use script blocks to display static
text. This way I can make changes to the
content without having to log into the
administration panel. Also, I know that
all of my blocks create their content in
the same way, which makes administra-
tion easier (for me, at least).

Like modules, script blocks are avail-
able as soon as you create the necessary
file. Blocks are stored as individual files
in the blocks directory and always have
the block- prefix. For example, I have a
block that displays a table of contents for
my tutorial. This file is called block-Tito-
rialMenu.php. When I drop this file into
the blocks directory, it is immediately
accessible through the administration

n October 2004 www.linux-magazine.com

m PHPNuke: Easy configuration

panel. By default, the new module is
inactive.

The key to script blocks is the $content
variable. Whatever this variable is set to
when the script exits, will be displayed
within the block. To create a very simple
script that simply displays some text,
your block file might look like this:

<{?php
$content = "Welcome to my site";
>

By changing the $content variable based
on different criteria, you can create a
block that changes its contents. For
example, I have a block that first gener-
ates a random number between 1 and 5.
I then use a switch statement to set the
$content variable based on which num-
ber was generated.

You can take this one step further as in
the case of several existing blocks and
pull information out of a database, for
example, the block-Last_10_Articles.php
which shows the last 10 articles added to
the site. The “Did You Know?” block on
my Linux tutorial randomly takes an
entry from the “concepts” table in my
database and displays it with a link to
the appropriate page.

SlashOcean & other themes
One important aspect of any portal sys-
tem (at least in my experience) is the
ability to configure it to your own per-
sonal tastes and preferences. This is the
basic concept behind themes. As with
other kinds of software, a portal theme
lets you define colors, layout and often
even which graphics appear. By default
PHPNuke provides over a dozen differ-
ent themes and provides an easy
mechanism to change these, as well as
add new ones.

Underneath the themes directory there
is a sub-directory for each theme. The
style sub-directory contains the CSS file
for the respective theme, which includes
font sizes and colors, and so forth. I have
found that the default sizes are often too
small for larger monitors. On my site, I
created copies of each of the themes and
increased the size of the fonts in incre-
ments of 2. I ended up with themes like
SandJourney Large and SandJourney
VeryLarge where the only difference was
the size of the fonts.

The images directory contains theme-
specific images. Here you might have a
site logo that looks different with differ-
ent themes. By default PHPNuke will use
the file link-logo.gif. So by naming your
logo the same, you can copy it into all of
the theme directories, and then change it
as needed.

The bulk of the work is done by the
theme.php file, including the overall lay-
out, header, footer, and even some of the
basic colors. This is an important thing
to note, since one might expect that the
CSS file would be responsible for defin-
ing all of the colors. However, the
background colors and table edges
(among other things) for various tables
are defined in the theme.php file. So, if
you are making changes to a theme and
cannot figure out where to change spe-
cific colors, this is the place to look.

In the theme.php file you also find the
OpenTable() and CloseTable() functions
we mentioned earlier. This is because
the appearance of these tables is theme
dependent.

Note that many of the themes consist
of more than just the theme.php. Some,
such as the 3-D-Fantasy, NukeNews and
Odyssey themes contain a number
of additional files. In general, these
are HTML “template” files that are more
or less inserted into the page at the
appropriate location. The site logo is ref-
erenced in one such file, so if you change
the location (like I did), you will need to
change these files as well.

PHPNuke takes the concept of themes
one step further and allows you to have
modules that are different depending on
the theme. This can be very useful if you
have themes that provided different lay-
outs. For example, one theme might
provide blocks only on the left side.
Blocks that are configured for the right
side are not visible.

Within each theme, there is a modules
sub-directory, where you create the sub-
directory for the specific module. By
default, you will find the “Addon Sam-
ple” module is present for most (if not
all) existing themes. When you call up
this module, you will see that the text at
the top of the content block is slightly
different and looks like this:

Addon Sample File (index.php) 2
CALLED FROM MODULE_NAME

To add other modules to specific themes,
you start by copying the entire module
directory into the appropriate theme
directory. Next you need to change file
and directory paths to make sure they
reference the new location. For example,
you might have a configuration file
for your module that normal resides
in the /modules/YourModule directory.
You would then need to change refer-
ences to point to /themes/ThemeName/
modules/YourModule.

Note that if you want to change the
themes for your forums, you don’t need
to create a new forum module for that
specific theme. Instead, you create a
theme within the Forums. This is a little
cumbersome, but it helps keep the code-
base simpler. As mentioned previously,
the PHPNuke forums are a port of
phpBB. If the phpBB code were much
more integrated, a great many changes
would be needed.

Making the waters safer

You may have noticed that in most direc-
tories there is an empty index.html file.
This serves two purposes. First, you will
probably not want your visitors to list
the contents of the PHPNuke directories,
so you might disable it in the virtual host
configuration or in a .htaccess file with
Options -Indexes. Should a visitor input
the name of a directory without a file-
name, the system with try to load either
index.html or index.php. If neither one
of these is present, you would get an
error. Personally, I think that even a
blank page is better than a system error
message saying that I am not allowed to
do something.

Another issue is the fact that the
index.html is typically loaded first. If you
do have an index.php file (which is the
case with the modules), you typically do
not want your visitors to load these files
directly; instead you add the index.html,
so it is loaded first. Should the index.php
be loaded first, or if there is no
index.html, there is a way of keeping vis-
itors from accessing the file directly.
We’ll get to this in the next installment.

In your PHPNuke root directory you
will find a robots.txt that contains a list
of directories that robots (i.e. search
engines) should ignore. Unfortunately,
some robots ignore this file completely
and scan your entire site. To limit this, I

PHPNuke: Easy configuration m

created an .htaccess file, which looks for
a number of specific robots and redirects
them to a special page.

The robots I try to block are not ones
used by major search engines like
Google, because these are generally well
behaved. Instead, I include download
tools like wget as I don’t want people
downloading the entire site at once.
However, many of these tools can make
it look like they are some other program
(even a real browser) so this does not
stop everyone.

One nasty bug that PHPNuke had was
the ability to create an admistrator
account. This meant a hacker had com-
plete control over all of the functions
available through the administration
panel. By limiting access to the admin
directory, you can limit who can do
what. Assuming your provider allows it,
you can create entries in the .htaccess
file that limits access to only specific
hosts. This needs to be changed each
time you add an administrator, but keeps
unwanted administrators away from the
system. |

[1] PHPNuke system in action:
http://www.linux-tutorial.info

[2] The PHPNuke Site:
http://www.phpnuke.org

[3] Home of a huge PHPNuke forum and
many other resources:
http://www.nukecops.com

[4] Wide range of fixes for various release,
including a forum:
http://www.nukefixes.com

[5] Anumber of different PHPNuke forums:
http://www.nukeforums.com

[6] Awide range of resources for PHPNuke:
http://www.nukeresources.com

[7] Security related issues and fixes:
http://www.nukesecurity.com

James Mohr is
responsible for the
monitoring of several
datacenters fora
business solutions
provider in Coburg,
Germany. In addition |
to running the Linux
Tutorial web site (http://www.linux-
tutorial.info), James is the author of
several books and dozens of articles on
a wide range of topics.

THE AUTHOR

www.linux-magazine.com October 2004 ﬂ

