
Postfix using your distro’s package man-
ager should not prove too difficult. Suse
users can call yast -i postfix, and Debian
users apt-get install postfix. If this works
as expected, you should now have a
/etc/postfix/main.cf file. This is the
major config file for your postmaster.

It is worthwhile taking a look at this
file before we start modifying settings.
The main.cf file is well-documented by
most distributions. It is full of sample
configurations, which are tagged as com-
ments (#). If a parameter is disabled,
Postfix will always have a useful default
handy. Some distributions add values of
their own at the end of main.cf, allowing
admins to locate the most important
parameters at a glance. The downside is
that your modifications might be over-
written by entries further down in the
file. The last value applied wins. The
postconf program provides an alternative
to manual editing (see the “Overview of
Postfix Tools” box) which helps with the
entering of new parameters.

The first time you run Postfix on a
machine, you need to define a few basic
settings for the hostname and network
interface (see the “Postfix Basic Configu-

ration” box). After completing this step,
and assuming that your tests have been
successful, we can now turn to a few
typical applications.

Scenario 1: Plain Vanilla
Our simplest case assumes that Postfix is
running in a data center or on a corpora-
tion network with a static, routable IP
address. In this case, the mail server
should work after completing the basic
installation steps, accepting email mes-
sages for its domain, and allowing
clients on the local network to send mes-
sages to other mail addresses. A server
like this is extensible. You can add spam
and antivirus protection (see Box “Virus
and Spam Protection with Amavis”) or
provide a mail relay for customers.

The most important question with a
mail server is whether the server accepts
mail or not. A normal mail server
accepts email from anywhere in a net-
work, assuming that the messages are
destined for a mail address for which the
server is responsible. Only users are
allowed to contact the server to send
mail to the Internet, and the server will
deliver mail all over the world.

An email server is a standard piece
of equipment for enterprises.
Email communication is rapidly

becoming the preferred method of
exchanging messages. Even government
offices are catching on, with mail servers
rapidly gaining a foothold.

However, mail servers are a complex
subject and beginners often have no real
understanding of a mail server’s poten-
tial. Reason enough to look at the Postfix
Mail Transfer Agent (MTA) [1] in a few
application scenarios, especially as it is
known for its simplicity and security.

After completing an installation to put
a Linux distribution on the designated
Postfix machine, the steps for installing

The Postfix mail server continues to

gain popularity, above all as it is

simple to modify and configure. No

matter whether you use Postfix as a

dialup host, in a DMZ, or as a simple

relay, we will be looking at typical

scenarios in production environ-

ments. BY PEER HEINLEIN

Postfix in Practical Scenarios

Flexible Postman

31www.linux-magazine.com October 2004

COVER STORYPostfix
w

w
w

.photocase.de

Peer Heinlein has been
an Internet Service
Provider since 1992.
Besides his book on
Postfix, Peer has pub-
lished two other
books on "LPIC-1" and
the "Snort" Intrusion
Detection System with Open Source
Press. Peer's company, www.heinlein-
support.de, educates and trains
administrators, and provides consulting
and support services all over Europe.

TH
E

AU
TH

O
R

32 October 2004 www.linux-magazine.com

PostfixCOVER STORY

It is not the server’s responsibility to
deliver mail from arbitrary addresses and
users to arbitrary destinations.

If we apply this to a configuration,
these distinctions are made by setting
the smtpd_recipient_restrictions parame-
ter. We can simply use the default:

smtpd_recipient_restrictions U

= permit_mynetworks,
reject_unauth_destination

Relaying is permitted for any IP
addresses in $mynetworks, but other-
wise Postfix will refuse any mail not
destined for it; in other words, the server
needs to be the final destination.

Scenario 2: As a Backup MX
In contrast to Web servers, it is quite
easy to designate a backup mail server
that accepts any messages posted to your
main mail server while it is down, and
puts the messages into temporary stor-
age. In smaller networks it is often not
worth setting up a Backup MX; other
mail servers along the path to your main
mail server will also keep mail for deliv-
ery later, when your Postfix server is
back up and running. However, there are
a few situations where a Backup MX can
still prove useful. Knowing where mes-
sages will be stored in case of down time
gives admins more leeway; at least you

have some control over the backup
server, and can patch up a workaround
that will keep your business running.

There are some environments where
another type of mail server (such as
Exchange, Scenario 3) stores messages
temporarily, allowing the Backup MX to
deliver incoming messages without
delay, despite any problems with the
main server. Here, the two servers are
peers, and fail over transparently.

Backup for Reliability
It is easy to set up a backup mail server.
All you need is a second Linux machine
with Postfix installed and the minimal
configuration shown in the “Postfix
Basic Configuration” box. The Backup
MX needs a suitable MX entry in your
DNS. Select a higher MX value to reflect
a lower priority and allow other mail
servers to contact your main mail server
(MX 10) first. If this fails, they will
choose the backout machine (MX 20).

The machine needs to know that it is a
backup machine, and expected to store
messages. To configure this, look for the
line with smtpd_recipient_restrictions in
main.cf, and add an entry for permit_

mx_backup, paying attention to the
order of the entries:

smtpd_recipient_restrictions = U

permit_mynetworks,
permit_mx_backup,
reject_unauth_destination

You can use any other mail server as a
backup machine. Two active servers
could back each other up if an error con-
dition occurs. Smaller companies should
look to use the provider’s mail server or
contact a partner to organize a mutual
backup solution.

postfix flush: Immediately attempts to
deliver any mail waiting in the mail queue.

mailq: Lists all the messages in the mail
queue with their status.

postconf parameter: Shows the current set-
tings for this parameter.

postconf -e “parameter=value”: Sets a para-
meter in main.cf to the given value.This
allows for convenient editing of main.cf in
shell scripts, and other applications.

postconf -n: Displays all the parameters in
main.cf which are not default values.This is
very useful for troubleshooting.

postsuper -r: Initiates a “requeue”for all
messages; that is it puts the messages back
in the queue, resolves all DNS data, and
checks any new address aliases (such as the
ones in the virtual table).

postmap file: Converts a lookup table from
Postfix (for example virtual or transport to a
Postfix database format.

Overview of Postfix Tools

A few simple steps are all it takes to config-
ure a newly installed Postfix machine to
allow it to assume the role of a normal mail
server on a LAN.You will typically need to
modify a few parameters in main.cf. Ensure
that the setup program provided by your dis-
tribution has entered useful values into
/etc/postfix/main.cf.The first place to look is
the end of the file.This is where setup pro-
grams tend to add critical parameters, which
would overwrite any changes you made fur-
ther up in the file.

Postfix can use variables. If you define
$myhostname somewhere in the file, you
can use the variable at other positions.

$myhostname has to be a hostname that
DNS can fully resolve to your server name,
including the domain (FQDN).

$mydomain is not normally set. Postfix
checks $mythostname for the domain in this
case.

$mydestination tells Postfix the mail
addresses for which it is the final destina-
tion, that is, the domains for which it should
accept messages for delivery to local
accounts – this is a critical parameter.
Besides localhost and $myhostname, $mydo-

main is typically added here, as messages
are normally addressed to
user@example.com rather than to
user@mail.example.com.

$mynetworks: Includes the trusted IP
addresses that are permitted to send mes-
sages to external addresses (relaying).This is
typically 127.0.0.0/8 and the local subnet
served by the mail server.

$mynetworks_style: Alternatively, Postfix
allows you to use this parameter to define
the network segments allowed to relay.The
server refers to its own IP address to discover
the networks, allowing for a flexible configu-
ration that can be transferred to other
servers.

$mynetworks_style = class

The value for class reflects the network class,
A/B/C, of the network on which the server
resides.The other alternatives are subnet
(refers to the server’s subnet and is normally
the best choice), and host (for the server IP
address).

Postfix has to reload the configuration from
main.cf when you change it. Depending on
the distribution you use, type either rcpostfix
reload or /etc/init.d/postfix reload to do this.

Postfix Basic Configuration

01 # Permit DNS queries:
02 /usr/sbin/postconf -e

"disable_dns_lookups = no"
03 # Allow immediate mail

delivery:
04 /usr/sbin/postconf -e

"defer_transports = "
05 # Reload configuration:
06 /usr/sbin/postfix reload
07 # Process mail queue:
08 /usr/sbin/postfix flush

Listing 1: ip-up.local

main mail server,
and deliver the
messages to that
server when it
comes back up, as
if nothing had hap-
pened.

Scenario 3:
Relay in the
DMZ
There are good
reasons for using
Postfix as a mail
relay, and storing
messages on an-
other mail server.
Environments that
use MS Exchange

to support critical Groupware functions
on a LAN are just one example; Exchange
is not renowned for its prowess in the
battle against spam, viruses, and hackers.
To mitigate the risk, some admins set up
a Postfix server at the border to their net-
works, allowing Postfix to handle
Internet-based mail exchanges, and pass-

ing incoming mail to the Exchange server
on the local network.

This removes the need to expose the
Exchange server on the Internet. At the
same time, Postfix can show its strength
in the fight against the issue of malevo-
lent messages.

Do-It-Yourself Routing
You can use the same setup if you need
to deploy a mail server in your DMZ to
relay incoming mail to another mail
server in your secure LAN. It does not
make any difference if this is an
Exchange server or another Postfix
server. Figure 1 shows this scenario.

After rebooting, Postfix will accept
messages although they are not
addressed to its final_destination do-
main. The server recognizes that there is
another server with a lower MX value (a
higher priority) and not try to deliver any
messages to local accounts. The server
will continually attempt to contact the

33www.linux-magazine.com October 2004

COVER STORYPostfix

Figure 1: A relay server in the DMZ protects the mail server proper where
the mailboxes reside.

External firewall

Inner firewall

DMZ / Green zone

Internet

LAN

Mail server

Mail server
SMTP/POP3/IMAP

SMTP-Relay

Proxy Server
HTTP/FTP

WWW Server
HTTP

01 # Disable DNS queries:
02 /usr/sbin/postconf -e

"disable_dns_lookups = yes"
03 # Stop SMTP transmissions:
04 /usr/sbin/postconf -e

"defer_transports = smtp"
05 # Reload configuration.
06 /usr/sbin/postfix reload

Listing 2: ip-down.local

34 October 2004 www.linux-magazine.com

PostfixCOVER STORY

smtpd_recipient_restrictions U

= permit_mynetworks,
permit_mx_backup,
reject_unauth_destination

The server will not look for local user
accounts, but instead honor the trans-
port record, sending the messages for
this domain to the 192.168.1.99 IP.

Instead of using an IP, you could use a
DNS hostname, but the square brackets
are mandatory. The brackets have a spe-
cial meaning and tell the server to relay
the messages to the named host (identi-
fied by querying the DNS A record) and
not to the authoritative mail server for
the domain (identified by querying the
DNS MX record – as this could be the
relay itself).

Admins have to allow mail to travel in
the opposite direction too, allowing mes-
sages to travel from the LAN-based mail
server at 192.168.1.99 to the Postfix relay
in the DMZ. The settings will depend on
the LAN-based mail server’s software.
You will typically find a parameter called

“Relayhost” (or sometimes Smarthost)
that handles this. Any messages with
external addresses are sent to this host
for forwarding; this is the counterpart of
the transport table if you like. If the LAN-
based mail server also runs Postfix, you
can add the following entry to the
main.cf file:

relayhost=[mail.example.com]

Scenario 4: Without a
Permanent Connection
The scenarios we have looked at so far,
assumed a leased line with static IPs to
facilitate routing to the servers. Not
everyone has a Class C network with a
2Mbit or even 34Mbit leased line, or a
server of their own at the data center.
Users in home or small business net-
works, or in areas without broadband,
may still need to resort to a good old
ISDN card and dialup access to an Inter-
net-by-Call provider. With this kind of
connection you can expect to be billed
for access and connection time.

Just a few steps are required to modify
the Postfix configuration. Several options
are open to the admin, but the easiest
way to go is to use a so-called transport
table. The /etc/postfix/transport file tells
Postfix to deliver mail based on a pre-
configured IP address, rather than using
the MX records in the DNS. If the local
mail server on your LAN has an IP of
192.168.1.99, the following is fine:

example.com smtp:[192.168.1.99]

The next thing you need to do is call
postmap /etc/postfix/transport to tell
Postfix to convert the file to its native
database format.

The rest of the Internet does not know
about this setup, of course. Other mail
servers will use the MX record to identify
the DMZ mail server as their target, and
send mail to that server. Postfix accepts
this incoming mail, as the mail address
includes the MX record for the domain
and permit_mx_backup is specified in
the smtpd_recipient_restrictions:

Effective spam protection is often a complex
matter, and a whole armory of defensive
methods may be required to provide it.The
Amavis Project [8], which started off life as
an antivirus gateway for mail servers, allows
you to integrate Spam Assassin – an
extremely complex, and intelligent software
that can filter your mail on spam criteria.

Although you can install Spam Assassin as a
stand-alone software without Amavis, the
dual approach is preferable. Amavis is quick,
and easy to install; it performs well, and han-
dles the details of Postfix and Spam Assassin
integration really neatly. Also, if you install
the antivirus program, you get virus check-
ing into the bargain.

Both programs are included by most of
today’s modern distros. As there are many
versions around, you should always check
amavisd-new for the latest version.
After installing the packages, you should
have a amavisd-new daemon running in the
background. It opens a lightweight SMTP
daemon on port 10024, and uses a virus
scanner, and Spam Assassin to check emails
on this port. Assuming it does not find any-
thing, the daemon uses SMTP to forward the
messages to Postfix via port 10025. Figure 7
shows the setup.
After calling /etc/init.d/amavis to launch
Amavis, it makes sense to check the logfile to
see if everything is running as it should be.

Depending on your distribution, Amavis will
log the results in /var/log/mail or
/var/spool/amavis.

There are just two steps left with Postfix. An
entry of

content_filter=[127.0.0.1]:10024
in main.cf tells the server to send new email
messages to amavis-new.

At the same time,Postfix has to open the
local port 10025 to pick up checked messages.
The master.cf file handles this.A suitable
entry may already be pre-configured:

localhost:10025 inet n - nU
- - smtpd -o content_filter=

The -o content_filter= parameter tells Postfix
not to forward checked mail to amavisd-
new, and prevents an infinite loop. Again,
you need to restart Postfix to apply the
changes.

Some distributions configure Spam Assassin
to allow all mail to pass, even messages that
have been identified as spam. Check out the
documentation and readmes with your dis-
tribution for more details (look in
/usr/share/doc/packages/amavisd-new for
Suse).You can also use the test messages in
this directory to ensure that spam and virus
detection is working as designed. /etc/amav-
isd.conf is the place for any fine tuning you
might want to perform.

Virus and Spam Protection with Amavis

Figure 7: Every message goes through an additional check performed by Amavis.

Normal treatment
through Postfix

SMTP, Port 10025
 No content filter

SMTP, Port 25
 Content filter

Input from other mail server

Amavis

Port 10024

36 October 2004 www.linux-magazine.com

PostfixCOVER STORY

will need to add the changes in Listings 1
and 2 to these files; recent versions pro-
vide the ip-up.local and ip-down.local
files for local modifications, however.

In contrast to sendmail, Postfix cannot
check whether the queued messages
have been delivered successfully as the
connection is closed by a dial-on-
demand timeout if not in use.

Modem, ISDN, and DSL connections
in multi-user environments can all bene-
fit from traffic shaping to prevent parallel
mail transmissions from impacting the
Web surfer’s experience [2].

Scenario 5: Postfix and Port
Forwarding/NAT
It is common practice to use an IP such
as 192.168.0.0/24 for local networks and
Network Address Translation (NAT) or

masquerading to map
this private address to the
routable IP assigned to
the dialup host or router.
Postfix has no trouble
transmitting messages in
this kind of environment,
but incoming mail is
another matter. Today’s
routers typically have a
port forwarding feature,
which is often referred to
as “Destination NAT”.
The router opens up a
pre-configured port and
forwards any incoming
connections for this port
to the servers running on
the local 192.168.*.* net-
work.

Although this is okay
for many services and will work reliably
with your Web server at home, for exam-
ple, it can cause a mail server quite
serious trouble. Here, the router opens
up a TCP connection to the mail server,
but from Postfix’s point of view, the con-
nection is from the host at 192.168.0.1
and not from a host out on the Internet.

The IP assigned to the router is typi-
cally within the subnet defined in
$mynetworks, and thus a trusted IP
which is allowed to relay to external
addresses. Thanks to port forwarding, a
home mail server can quickly become an
open relay for spammers and cause the
owner no end of surprises. An entry for
the router IP in the proxy_interfaces vari-
able will prevent this:

proxy_interfaces=[ip.of.router]

Saving Money
Postfix does not know if the
Internet connection is up or
down. It simply attempts to
query DNS for the target
server, and deliver any mes-
sages it has in its queues. If
your ISDN connection is
configured to dial on
demand, every email one of
your users transmits would
cause Postfix to dial up an
Internet connection. You
can imagine what this
would cost in a busy office.

The idea is to configure
Postfix to queue mail locally
while the connection is
down, and start handling
messages as soon as the
connection goes up (possi-
bly because an Internet user has opened
a dial-on-demand connection.

If the parameter defer_transports=
smtp is set in main.cf, Postfix will not
immediately attempt to deliver messages
to external addresses (which would
meaning dialing up the provider), but
first queue them locally. After dialing up
the provider, you can use a script to set
this parameter to zero, reload the config-
uration and call postfix flush to flush the
messages waiting in the queue. postconf
-e provides a convenient way of modify-
ing main.cf from the console (see Box
“Overview of Postfix Tools”).

The /etc/ppp/ip-up and /etc/ppp/ip-
down that most distributions run after
establishing a connection and discon-
necting can be used to automate this
process. For some Linux variants, you

Figure 2: If port forwarding is used, Postfix has to know that the local router
address is not trustworthy.

192.168.0.4

62.8.206.62

195.135.220.2

Target: 192.168.0.1
Sender: 192.168.0.1
Target: 192.168.0.4

mail.suse.de

Sender: 62.8.206.62
Target: 195.135.220.2Target: 62.8.206.62

Sender: 195.135.220.2

192.168.0.5

192.168.0.75

Sender: 192.168.0.4

192.168.0.1

Figure 3: Services like DynDNS are popular with users of low-budget DSL
accounts. They cause Postfix a few problems.

Figure 4: Two additional options in the software configuration, tell KMail to
use SMTP-Auth to authenticate.

37www.linux-magazine.com October 2004

COVER STORYPostfix

This tells Postfix to handle any connec-
tions to these IPs as not belonging to
$mynetworks. Also, the server knows
that it has to treat these IPs as its own for
DNS queries, to avoid relaying messages
to itself, from Postfix to the router, and
via port forwarding back to Postfix.

Scenario 6: Using DynDNS
DynDNS and similar services offer free
subdomains for your hosts, and tools
that flexibly change the IP address regis-
tered with DNS. Whenever a client dials
up the Internet, it can automatically set
its own DNS entry to the dynamic IP
address assigned by the provider. Of
course, this is a fantastic solution for
home PCs or scratch servers, as you can
use the same name for access despite IP
address changes.

Using a DynDNS address to handle
your mail might sound like an attractive
proposition, but you need to be aware of
how mail servers work. An MTA looking
to deliver a message will first query DNS
for the MX or A records in the domain to
discover the host it needs to send the
message to.

Of course, this would work fine with
DynDNS. The going starts to get more
difficult if your computer happens to be
down for a few hours. Other MTAs will
store your mail as usual, but will send it
to the former IP when it becomes avail-
able again, instead of querying DNS
before delivery. Even if the target mail
server had a new IP, and the DynDNS

entry pointed at the right address, mes-
sages stored on other servers while the
server was down would never reach it.

In an ideal case, these messages would
be returned to the sender as undeliver-
able a few hours, or days, later. If you are
unlucky, the IP might be assigned to
another MTA, which might accept the
delivery, putting your secrets in the
hands of a total stranger.

DynDNS-based mail collection has to
be regarded as a compromise that you
should definitely not rely on.

Scenario 7: DynDNS as a Relay
There is an answer to the DynDNS issue,
assuming you have another mail server
with a static IP. If you assign highest pri-
ority (the lowest MX value) to the MX
record in your DNS, MTAs will deliver
messages to the relay first. An entry in
the transport table tells Postfix to deliver
messages to the DynDNS host. This sce-
nario is more or less the same as
Scenario 3 so far. Of course, you need
square brackets for the /etc/postfix/trans-
port entry again:

test.dyndns.org smtp:U
[test.dyndns.org]

Postfix will relay any messages for
…@test.dyndns.org to the DynDNS host.

If this address is unavailable for a
longer period of time, the relay would
queue the messages and not resolve the
IP number of the target host after doing
so. As a workaround, you could call

postsuper -r ALL

at regular intervals – a cronjob every
hour should do the trick. This tells
Postfix to requeue any outstanding mes-
sages. At the same time, the mail server
would resolve the DNS data, thus honor-
ing any changes to the DynDNS address
that have occurred in the meantime, and
allowing it to deliver the messages to the
right address.

This setup works with one or two
exceptions, but it is far from perfect. The
fact that requeuing only occurs once an
hour could delay delivery by up to an
hour. In this time, a new MTA might
become available at the old IP, and your
mail would end up in some stranger’s
mailbox. This kind of issue assumes that
the DynDNS host is down for a longer
period of time and would only affect
users with modems or ISDN, rather than
DSL, which is available 24x7 apart from
a few seconds per day.

Of course, there is always the question
as to the usefulness of a DynDNS solu-
tion that needs a genuine mail server as
a relay to queue its messages. On the
other hand, in an environment with mul-
tiple mailboxes the DynDNS setup
shown here is less trouble than a com-
plex fetchmail configuration on the
DynDNS host that picks up the messages
from the relay’s mailboxes, if you need
to have your mail stored in mailboxes on
the DynDNS host.

Scenario 8: Postfix and SMTP
Auth
The previous scenarios allow users to
send mail via a Postfix mail server, if
they are in $mynetworks. Things are

smtpd_sasl_auth_enable = yes

enables or disables SMTP-Auth no.

smtpd_sasl_security_options =
noanonymous, noplaintext

noanonymous prevents anonymous logins,
noplaintext prevents clients from transmit-
ting the SMTP-Auth password in the clear,
which is what the PLAIN and LOGIN authen-
tication methods do.This parameter forces
the client to encrypt the password to pre-
vent it from being sniffed. Users need to
select secure settings in their software (for
example CRAM-MD5 or DIGEST-MD5, Figure
5).This is not required if logins will be taking
place over secure SSL/TLS connections.

smtpd_sasl_local_domain = mail

This parameter stores the value used as a
realm by sasldb2. Realms are basically used
to authenticate users from multiple (virtual)
server domains, however, both Postfix and
many clients can only handle a single SASL
domain.

broken_sasl_auth_clients = yes

Some older clients, for example Microsoft
Outlook Express 4.x, expect the mail server
authentication in the following format,
AUTH=LOGIN…, although this is more typi-
cally AUTH LOGIN…. Setting this value to yes
tells Postfix to output the AUTH banner
twice using each of these formats.

Critical SASL Parameters

Figure 5: Select MD5 encryption to secure pass-
word transmissions.

38 October 2004 www.linux-magazine.com

PostfixCOVER STORY

manages a small login database in
/etc/sasldb2, which Postfix can access to
validate users.

You can add user entries with the
saslpasswd2 tool, and sasldblistusers2
lists the existing entries.

Cyrus-SASL can manage multiple host-
names and domains in a single database,
allowing multiple user accounts with the
same name but for different domains to
co-exist peacefully. Cyrus-SASL uses a
realm concept to distinguish between
accounts. You can either use the -u
domainname parameter to define a spe-
cific realm, or saslpasswd2 will simply
use the hostnames, mail in this case (see
Box “Critical SASL Parameters”) to
define smtpd_sasl_local_domain.

To tell Postfix to allow users who have
authenticated via SMTP-Auth to relay,
admins need to add an option for
permit_sasl_authenticated to the smtpd_
recipient_restrictions list:

smtpd_recipient_restrictions= U

permit_mynetworks,
permit_sasl_authenticated,
permit_mx_backup,
reject_unauth_destination

You also need the following parameters
in main.cf.

smtpd_sasl_auth_enable = yes
smtpd_sasl_security_options = U

noanonymous, noplaintext
smtpd_sasl_local_domain = mail
broken_sasl_auth_clients = yes

Refer to the “Critical SASL Parameters”
box for more details on the individual
options.

A small script will take care of every-
thing else; transferring the user data to
the SASL database. The -p parameter
tells saslpasswd2 to read the password
from standard input:

echo secret | U

saslpasswd2 -p -c tux

Although SMTP-Auth is quite simple to
set up, it does have some drawbacks:
The postmaster has to get users to enter
the required credentials into their client
configurations (Figures 4 and 6).

POP before SMTP
The popular POP-before-SMTP method
(aka SMTP-after-POP) is an alternative,
and it does work with IMAP servers
despite the name. The idea is trivial, but
it is still quite difficult to configure. After
a successful POP3/IMAP login has
occurred from a specific machine, you
can assume that it is a trustworthy user.
The mail server then accepts mail from
authenticated email clients for a specific
interval (typically 15 minutes).

more complicated for users from outside
of the local IP range, attempting to con-
tact the server from an arbitrary host on
the Internet in order to send email mes-
sages. In other words, we need to think
about authentication.

A Mail Address is Not Proof
of ID
The idea of using mail addresses for
authentication is a bad one. Mail
addresses can be chosen arbitrarily, and
spammers often do just that. Some
spammers use the mail addresses of the
mail servers they exploit to convince
these servers to relay the unsolicited
mail.

If you are unable to identify clients by
static IPs or cryptographic techniques,
your only option is to use password pro-
tection. In contrast to the POP3 or IMAP
protocols, which are used to collect
email messages, SMTP did not originally
specify a mechanism for checking user
names or passwords for identification
purposes. This gap was closed some
time later, and modern MTAs and mail
clients all support SMTP authentication
(SMTP-Auth). A client needs to identify
itself when it requests a mail transfer to
be regarded as trustworthy.

User Management with
Cyrus SASL
The Cyrus SASL package [3] brings this
functionality to Postfix. The package

01 ~: # /etc/init.d/pop-before-smtp start
02 ~: # ps ax | grep pop-before-smtp
03 5022 ? S 0:07 /usr/bin/perl -wT /usr/sbin/pop-before-

smtp
--watchlog=/var/log/mail --logto=/var/log/pop-before-smtp
--daemon=/var/run/pop-before-smtp.pid

04 9367 pts/1 S 0:00 grep pop-before
05 ~: # ls -al /etc/postfix/pop*
06 -rw-r--r-- 1 root root 12288 Oct 8 11:18 /etc/postfix/pop-before-

smtp.db

Listing 3: pop-before-smtp

Figure 6: No matter whether you have SMTP-Auth with MD5, or SMTP-After-POP the Windows Client,
“The Bat”, can handle both.

39www.linux-magazine.com October 2004

COVER STORYPostfix

After configuring the mail software to
check the mailbox first, before attempt-
ing to send messages, there are no other
steps required on the part of the user.
Some mail clients use this order by
default (KMail for example); others
allow you to change the configuration.
Older versions of Outlook (Express) are
basically incapable of POP-before-SMTP
and you will need a few tricks to get
them to play ball [4].

This approach has a few drawbacks
for postmasters, and it is slightly contro-
versial. For one thing, there is no real
way of validating the sender’s creden-
tials. A computer that has been validated
might be used by multiple users.

For another, there is always a danger
of a dynamic IP being assigned to
another user within the time slot, and
this user might happen to access the
mail server that authenticated the pre-
vious user (or an attacker might do this
on purpose). Still, POP-before-SMTP is
useful in many cases, and can be imple-
mented in addition to SMTP-Auth.

The pop-before-smtp script [5], which
many current distributions include as a
ready-to-run package, uses a daemon to
check the logfiles of a POP3/IMAP
server. When new entries or successful
logins occur, the script extracts the user
IP and enters the IP into the /etc/
postfix/pop-before-smtp database.

If Postfix decides to accept mail from
the authenticated IPs, there is nothing to
stop authenticated users from sending
mail. When the time slot has elapsed,
pop-before-smtp removes the IP from the
database.

The /etc/pop-before-smtp-conf.pl config
file uses regular expressions to identify
and extract the IP from the logfile entries
created by POP/IMAP mail servers. The
script has entries for many common mail
server types.

The init script supplied with the pack-
age loads the daemon when you boot
your machine; follow the steps required
by your distro to enable the script. After
restarting, the script should disappear
into the background and create the
required database (see Listing 3).

In debug mode the daemon logs any
IPs it has recognized in /var/log/pop-
before-smtp (see Listing 4). It will not
create entries for IP numbers that Postfix
has added to $mynetworks, or that are
already in the database, but simply note
that the IP was known. Debug mode is
enabled when the $debug variable in the
configuration file is set to 1.

If you see an entry for written ok in the
logfile, you can assume that the script
has stored the IP in the database. If this
entry is missing, pop-before-smtp is try-
ing to tell you that the IP is known from
a previous login and authenticated. An

entry for purging means that the time
slot for this IP has elapsed, and that the
IP has been removed from the database.

A quick look at the logfile after the
install tells you if login detection is work-
ing okay. If pop-before-smtp does not
recognize any IPs, you should check the
regular expression in /etc/pop-before-
smtp-conf.pl for errors.

Now, Postfix needs to know how to
evaluate the database to answer the
question as to whether a user is allowed
to relay. A smtpd_recipient_restrictions
parameter called check_client_access is
used to do this. The parameter expects
the database for the pop-before-smtp
script as an argument:

smtpd_recipient_restrictions = U

permit_mynetworks,
permit_mx_backup,
check_sasl_authenticated,
check_client_access hash:U
/etc/postfix/pop-before-smtp,
reject_unauth_destination

Before you send your server off into the
Wild, you should definitely check the
configuration [6]. Databases such as
ORDB [7] register open relays, and many
servers refuse to accept mail from hosts
known to be on these lists. If you get
blacklisted in an open relay database,
you might have a hard time getting off of
the list again. Changing the server IP is
often the only option as running an open
relay means helping the spammers. ■

[1] Postfix: http://www.postfix.org/

[2] Traffic shaping: http://lartc.org/

[3] SASL info and howtos:
http://www.thecabal.org/~devin/postfix/
smtp-auth.txt

[4] POP-before-SMTP with Outlook:
http://www.spinnet.jp/man/pbsmtp/
wine/pbs_we_ol98.html

[5] Script and howto for SMTP-after-POP:
http://popbsmtp.sourceforge.net/

[6] Very useful relay test:
http://www.abuse.net/relay.html

[7] Open Relay Database:
http://www.ordb.org/

[8] Amavis: http://www.amavis.org

Pictures courtesy of Open Source Press,
"Das Postfix-Buch", ISBN 3-937514-04-X,
www.opensourcepress.de

INFO

01 /var/log: # tail pop-before-
smtp

02 [...]
03 read ts=Mar 22 11:03:29

ip=62.8.206.156
04 read ts=Mar 22 11:17:58

ip=217.235.18.66
05 accepted --- not in

mynetworks
06 written ok
07 read ts=Mar 22 11:17:59

ip=217.235.18.66
08 purging ts=Fri Mar 22 10:21:50

2002 ip=217.224.233.74

Listing 4: Checking
the logfile

There are two standard formats that mail
servers use to store messages.The Mbox for-
mat stores all the messages for a specific
user in a single large Mbox file – for example
in /var/mail/username. Shell mail programs
like mutt or elm access the Mbox file
directly.The Mbox format is simple and
quick, but it can be time-consuming to
extract and delete individual messages
from a large mail file.

Maildir stores each message in a single file
and creates a directory for each user, for
example in /var/mail/username/… The
advantage that this format provides is its
flexible structure, which also supports the
use of IMAP servers, which create additional
IMAP folders below the Maildir directory,
providing the ability to sort messages.

Postfix uses the mail_spool_directory para-
meter to distinguish between Mbox and
Maildir. If the pathname stored in this vari-
able ends in a slash, (“/”)Postfix will store
the messages in Maildir format:

mail_spool_directory = /var/mail/
If the path name ends in a folder name,
without a terminating slash, Postfix will use
the Mbox format instead:

mail_spool_directory = /var/mail

Mbox and Maildir Formats

