
responsible for mapping filenames to
keys. The filesystem can use keys to
locate the required bytes in the storage
layer. The offset provides the byte posi-
tion within a given object.

Filesystem plugins
Reiser 4 uses plugins to handle file oper-
ations, using its own internal file and
directory plugin to handle typical Unix
file management tasks. Each file and
each directory also has a plugin ID
which describes a collection of outside
methods. These methods can be used to
tell the filesystem to execute outside
operations with the file.

Outside operations are file manage-
ment methods which are not part of the
filesystem itself. They allow external pro-
grams to interact with integral parts of
the filesystem without needing to com-
pile a new kernel. Reiser 4 has over 30
internal plugins at present; you can enter
the fsck.Reiser 4 -l command to view a
list. There are no known external plugins
at present. A quota plugin would be use-
ful – Reiser 4 does not support quotas at
present.

After a development period of over
four years, the Reiser filesystem
looks set for a major milestone

jump to version 4 later this year. Hans
Reiser’s developer team has re-pro-
grammed the new Reiser 4 from scratch.
The team is currently testing the perfor-
mance and stability of the designated
heir to ReiserFS, and removing any
minor bugs that it discovers in the
process.

Among other things, the new journal-
ing filesystem is capable of atomic
transactions, and extensible by means of
plugins. The Namesys homepage [1] has
a test version available for downloading
(see also the “Installation Guide” box,
on the following page).

The newly developed Reiser 4 is

rapidly approaching its premiere in

the kernel 2.6. It promises atomic

transactions and faster reading

speeds than its predecessor ReiserFS;

it makes better use of the hard disk

and is extensible by means of plug-

ins. BY MARCEL HILZINGER

New Journaling filesystem with atomic transactions

Reiser’s 4th Symphony

60 October 2004 www.linux-magazine.com

Reiser 4SYSADMIN

w
w

w
.photocase.de

After finishing studies
in Zürich in 2000,
Marcel Hilzinger has
been working for Suse
Linux’s Hungarian
office in Budapest,
where, among other
things, he translated the Suse docu-
mentation into Hungarian.

TH
E 

AU
TH

O
R

Basic Design
Put simply, the Reiser 4 filesystem con-
sists of two layers: the storage layer, and
the semantic layer. Objects exist in both
layers. Reiser 4 does not distinguish
between files and directories, but treats
both as objects. Each object on the
filesystem has an object ID and a key,
which is partially generated by reference
to the object ID.

As the name suggests, keys provide
access to the filesystem. Reiser 4 uses
keys to locate any of the objects. You can
even use the key to locate a specific sec-
tor of a file. In the basic setup, Reiser 4
now uses a long key system (for example
10001:1:746f6d20776169:0:10278:0) that
comprises the elements shown in the fol-
lowing list:
• Major Locality
• Minor Locality
• Ordering
• Unused (always 0)
• Object ID
• Offset
While the storage layer is responsible for
storing and organizing the data in the
tree structure, the semantic layer is



The file and hash plugin is responsible
for organizing objects. In contrast to
most Linux filesystems, Reiser 4 does not
organize files by creation date, but
alphabetically. In the case of files with
more than 15 characters in their names,
the first eight characters are significant,
followed by the hash of the whole file-
name.

Reiser 4 uses the hash plugin to orga-
nize directories. At present, it uses coo-
kies made up of the hash value and a
creation counter.

This is a tem-
porary solution
based on ReiserFS;
in future, the file

plugin will be responsible for putting
directories in alphabetical order.

Security Modules
The security plugins also play an impor-
tant role. This obviously has something
to do with the Reiser 4’s main sponsor,
the Defense Advanced Research Projects
Agency (DARPA), a research organiza-
tion run by the US Department of
Defense. One of the plugins handles
large files that contain a lot of informa-
tion.

Traditional filesystems apply access
controls only to individual files. You can
use access control lists (ACLs) to assign
different privileges for the same file to
different users, but if a user has been
granted access, this privilege applies to
the whole file.

Reiser 4 solves this problem by divid-
ing a file up into a collection of items; for
example, /etc/passwd would be divided
by reference to its individual lines. Each
item can have privileges, and use differ-
ent plugins. Reiser 4 also allows you to
assign a different delimiter for the item
borders depending on the application.
Applications still view individual items
as files.

61www.linux-magazine.com October 2004

SYSADMINReiser 4

This guide assumes the kernel 2.6.5 and the
official Reiser 4 snapshots dated March 26,
2004 [2]. Be cautious with patches for more
recent kernel versions [3], as error-free opera-
tions can not be guaranteed.
• Download the kernel sources off of the

official server [4], and unpack the sources
in /usr/src/.

• Copy the all.diff.gz patch from the
Namesys homepage to the directory for
the new kernel /usr/src/linux-2.6.5/.

• Change to the new kernel directory, and
apply the patch using the zcat all.diff.gz |
patch -p1 command.

• There is an entry for ->host missing in line
570 of fs/reiser4/as_ops.c.The line should
read:

mapping->host->dirtied_when=
jiffies|1;
• Replace the entry for mapping->dirtied

_when = jiffies|1; in line 477 of fs/reiser4/
plugin/tail.c with the modified line:

minode->dirtied_when = jiffies|1;

• Working as root, launch the kernel config-
uration program, by typing make xconfig
(you will need the QT 3 developer pack-
ages).

• Ensure that Reiser4 is selected for File sys-
tems.You can opt for a static build or a
dynamically loadable module, as shown in
Figure 1.

• After saving the configuration, compile
the kernel in the usual way by typing
make bzImage modules modules_install,
and then copy the new kernel to the tar-
get directory, by typing cp
arch/i386/boot/bzImage/boot/vmlinuz-
reiser4 for example. Avoid overwriting the
original kernel.

• If you use the Initial RAM Disk at boot
time (like Suse), you will need to run
mkinitrd to create a new RAM disk.

• To make it easier to boot the new kernel,
add an entry to the Grub configuration file

/boot/grub/menu.lst.

• The /etc/fstab file should not contain any
distribution specific options that the
default kernel can not handle. For exam-
ple, Suse 9.1 had difficulty with the acl and
user _xattr options. If you are unsure,
remember that all you really need is an
entry for rw,exec.

• You can now boot the new kernel. After
doing so, you need to install libaal-
0.5.0.tar.gz and reiser4progs-0.5.3.tar.gz.
Follow standard procedure to do so: ./con-
figure && make && make install. If
Reiser4progs fails to find the Libaal
libraries after you have installed them, run
ldconfig to remedy the problem.

• You can then run
/usr/local/sbin/mkfs.reiser4 Partition to
create Reiser 4 partitions, and mount to
mount them.

Installation Guide

Figure 1: The patched kernel has an entry for Reiser 4 below File systems. The
check mark means build the system into the kernel. Double clicking will
change the check mark into a dot. Reiser 4 will also run as a kernel module.

Figure 2: A directory with images on a Reiser 4 partition (left-hand side of
window). Clicking will not take you to the pseudofiles. Adding metas to the
path in the URL box, reveals the pseudofiles for the dsc00001.jpg image file,
and the plugin directory (right).



Reiser avoids overloading the file-
system with attributes, such as the
extended attributes found in Ext 2. The
idea is to achieve functionality by as sim-
ple an approach as possible, using files.
To this end, every object on a Reiser 4
filesystem has a kind of sub-namespace
in the metas directory, which the readdir
system call will not list, but which you

can change to by typing cd metas. 
This also holds good for files: cd file-
name/metas will change to the metas
directory for a file. However, the file,
itself, has to be executable for this fea-
ture to work.

The pseudofiles (see Figure 2, previ-
ous page) in the metas directory are
objects attached to other objects (files or
directories). They do not really have a
separate existence on the disk (in con-
trast to the files below /proc or /sys).
Reiser 4 uses them to implement various
standard Unix functions, as well as any
special security or compression meth-
ods.

For example, you can change the
owner of a file without calling chown, or
use a simple cat command to view the
access privileges for a directory (Figure 2
bottom). Table 1 provides a short
description of the major pseudofiles in
metas.

Living Filesystem
Modern Unix filesystems like ReiserFS,
XFS, and JFS are all based on tree struc-
tures. We need to distinguish between
B+ and B+ tree variants at this point.
Whereas B+ trees only store pointers

62 October 2004 www.linux-magazine.com

Reiser 4SYSADMIN

Hans Reiser worked on his theory of data-
bases and namespaces for over eight years
until, influenced by the theory of “Roads and
Waterways”, he finally reached the conclu-
sion that the filesystem has the same
significance for the computer, as roads and
waterways have for our civilization.The bet-
ter-connected a system is, the better its
ability to interact becomes, and the better it
can advance.

Reiser is not primarily a developer who
wants to create a filesystem, but a theoreti-
cian who regards a filesystem as the perfect
application of his theory. As Reiser wanted
to create his filesystem for and using Linux
right from the outset, and as funding was
limited, he looked for affordable and quali-
fied programmers.Thus, development work
on ReiserFS started in 1993 with Hans Reiser
and a team of young Russian developers.

ReiserFS 3.6 has been classified as stable
since the kernel 2.4.21. Namesys, the com-
pany behind developing Reiser 4, put the
new version through intensive crash tests in
2003. It was released for public testing in
2004 after removing the known bugs.

ReiserFS – More than 
a theory

File/Directory Description Explanation
bmap List of block numbers assigned to an object One block number per line
gid ID of an object’s primary group Example: 500
items List of elements that form the object Example: (2a:4:666f6f31000000:0:6d352:2)

body length: 3
key Object key Example: 2a:4:666f6f31000000:0:6d352:0
locality Major Locality of object The same for all objects within a directory
new Pseudofile for creating new objects
nlink Number of hard links to an object
oid Object ID of object Example:97549
pagecache Cache statistics of object You can read the file en bloc, or use the 

sub-objects clean, dirty, io, locked and 
nrpages to read it as a directory

plugin Plugins available for an object. You can type mkfs.Reiser4 -l to output the 
list

pseudo List of pseudofiles for an object
readdir List of sub-objects assigned to an object. In case of directories, lists the directory 

contents
rwx Access controls for an object in Example: 0100755 -rwxr-xr-x

numerical form and clear text
size Size of object in bytes A new empty directory on Reiser 4 occupies 

just 2 bytes plus 1 byte for each new 
sub-object

uid ID of object owner Example: 500

Table 1: Important Pseudofiles

Figure 3: A traditional balanced tree (top), as used by ReiserFS 3.6 has a special approach to storing
BLOBs, using a leaf to assume the role of an internal node. In contrast, a Reiser 4 tree (bottom) stores
BLOBs in the leaf node (extents). This keeps the number of internal nodes to a minimum.

Root node

Branch node

Twig node

Leaf node

BLOBs

Root node

Branch node

Twig node

Leaf node

BLOBs

Files and Subdirectories
As previously mentioned, Reiser 4 is not
an extension of ReiserFS, but a com-
pletely new development. The designer,
Hans Reiser, insisted on keeping the code
for the new filesystem as simple as possi-
ble. The “ReiserFS – More than a theory”
box provides details on Reiser’s begin-
nings.



and administrative information
in their internal nodes, B- trees
use the nodes to store data. As
B+ stores data in the leaves of
the tree only, B+ needs more
leaves than B- to store the same
amount of data. This said, B+
manages the internal nodes more
efficiently as they only contain
pointers.

ReiserFS and Reiser 4 both use
B+ trees. The major difference
between traditional balanced
trees, such as those used by Reis-
erFS 3.6, and the new dancing
trees, as used by Reiser 4, is the
way they handle BLOBs (Binary
Large OBjects) and internal
nodes.

BLOBs are files that need more space
than an end-node (leaf) can provide. To
store BLOBs, traditional databases and
ReiserFS use a leaf in one node to store
pointers to other leaves. This creates
additional internal nodes, and the Highly
Balanced Tree (where the path from any
leaf to the root should be the same

length) becomes unbalanced, see Figure
3, top.

Reiser 4 store BLOBs directly in the
leaves, treating BLOBs just like any other
data (see Figure 3, bottom). This mini-
mizes the number of internal nodes, and
keeps the tree balanced. On his home-
page, Reiser states that the source code

for the kernel 2.4.18 occupies
1629 internal nodes on ReiserFS,
in comparison to a mere 164 on
Reiser 4.

On an average computer with
Reiser 4, all the internal nodes of
the filesystem tree should easily
fit into memory. If it can not
avoid swapping out to disk,
Reiser 4 first pushes all the
nodes as far left as they will go
in the tree, and then gets more
nodes from the free space on the
right.

Dancing Trees
Continually balancing the tree
would add unnecessarily com-
plexity with all the data in main

memory, but it does makes sense to save
disk space, and thus avoid I/O opera-
tions. To do this, Reiser 4 compresses the
data stored in memory immediately
before writing to disk. This approach
improves performance. Traditional bal-
anced trees, such as those use by
ReiserFS, are typically more compact,

63www.linux-magazine.com October 2004

SYSADMINReiser 4

Figure 4: The first write operation with the kernel sources shows
that Reiser 4 is almost twice as quick as Ext 3. The candidates are
more evenly matched on overwrite operations. ReiserFS deletes
more quickly than any others.

36
.2

7
Copying

79
.0

2

110

90

80

70

60

50

40

30

20

0
Seconds

10

100

58
.0

0

90
.17

Overwriting

92
.2

6 10
3.

33

Reiser 4

ReiserFS

Ext 3

Deleting

13
.2

9

4.
24 9.

00



point at LOG. The newly-created journal
thus wanders over to a new position,
which thus explains the name of a wan-
dering log.

During a transaction, the Reiser 4 sys-
tem keeps modified blocks where they
are until the system confirms that the
transaction has been completed. After
receiving this message, Reiser 4 goes on
to complete the transaction; the number
of write operations depends on the
changes.

In case of minor changes to large files,
it makes sense to use two write opera-
tions. This means that the file can stay
put while the changes are written. In
case of major changes, it makes more
sense to change the node, and leave the
rest of the work to the repacker. This fea-
ture is not implemented at present, as
the repacker does not yet exist. As a

result, Reiser 4 will always use two write
operations.

Performance
As it is a multi-purpose filesystem, we
put Reiser 4 through various bench-
marks on a normal desktop PC. Our lab
machine has 256MBytes RAM and a
40GByte hard disk (Maxtor Baracuda,
ATA133). We used a copy of Suse Profes-
sional Linux 9.1 with the kernel
2.6.7-mm4 as the operating system, and
applied a recent Reiser 4 patch, dated
July 6, 2004 [3].

We used the fs_bench from [5] as our
filesystem benchmark. fs_bench com-
bines the Bonnie++ [6] and IOzone [7]
benchmarks. Besides this test, we also
used the results of the slow.c benchmark
from the Namesys homepage and our
own benchmarking tests.

Reiser 4 lives up to all of its hype with
excellent results, particularly when han-
dling small files where it has the best
benchmark results by far (see Figure 4,
previous page). The new filesystem is
not only quick, it also saves disk space,
with a kernel 2.6.7 build occupying a
mere 371 MBytes of disk space under
Reiser 4. ReiserFS needs 431 MBytes and
Ext 3 an enormous 446 MBytes of hard
disk space to store the same amount of
data.

One thing we noticed was that the
hard disk was a lot quieter during the
Reiser 4 test than it was with ReiserFS or
Ext 3. The Namesys developers really
seem to have been able to put the results
of their hard disk head movement tests
to good use, optimizing Reiser 4 for write

operations [8].

Reiser, the Turbo
Copier
As you can see in Figure 4,
Reiser 4 wins hands down
in the kernel source code
copy test. Our three test
candidates showed similar
performance in the over-
write test, although Reiser
4 is slightly quicker than
its competitors.

However, ReiserFS de-
letes quicker than the
other candidates; Reiser 4
has lost a lot of ground in
this discipline. This can be

but they need to shift data around more
frequently. The loss of compactness is
one of the drawbacks of the dancing
trees used by Reiser 4. A repacker
planned for version 4.1 will help to miti-
gate the impact.

ReiserFS assigns new nodes when cre-
ating a block number, whereas Reiser 4
waits until the system writes the data in
main memory out to disk. This feature,
which was modeled on XFS, means that
new files that are deleted without being
stored have no impact on the filesystem,
which in turn means a performance
boost.

Atomic Transaction
Atomic transactions are a traditional
requirement for filesystems. Let’s
assume that a power failure occurs while
a user is moving a file from A to B. On an
atomic filesystem, the file is either at
location A or at location B after power is
restored, but under no circumstances is
the file partly at A and partly at B. The
current approach to handling this is to
run the fsck program to check the filesys-
tem after a failure, and save any
fragments it finds in the lost+found
directory.

Reiser 4 has an atomic approach to
internal file moves. Although file frag-
ments may exist after a system failure
during copying, the fragments will con-
tain data from the copied file only, rather
than binary junk. This is important for
security reasons, as scrap files can con-
tain personal information and this
should obviously be avoided.

Depending on the circumstances,
Reiser 4 will write files
once (from the source to
the target) or twice (from
the source to the journal,
and from the journal to
the target). To provide for
atomic operations with
any single write transac-
tions, Reiser 4 simply
swaps the journal for the
target.

If Reiser 4 needs to copy
a file from directory A to
B, it will first write the file
to LOG, that is the storage
location of the journal,
and then point the nodes
that pointed at B up to this

64 October 2004 www.linux-magazine.com

Reiser 4SYSADMIN

Figure 5b: IOzone uses a 1 GByte file for its benchmark. Reiser 4 is slower than Reis-
erFS or Ext 3 with the smallest records, but sizes of 4 or 16 KBytes are more relevant
in practical applications.

47
6

0,5 KByte

44
9

500

450

400

350

300

250

200

150

100

0

Seconds

50

44
8

Reiser 4

ReiserFS

Ext 3

39
2

1 KByte

40
1

40
1

33
4

4 KByte

36
3

36
7

33
3

16 KByte

37
6

35
1

Record Size

Figure 5a: The more files the 1 GByte of data
include, the quicker Reiser 4 performs the Bon-
nie++ benchmark in comparison to other
filesystems.

10,000
Test files

6500

4500

4000

3500

3000

2500

2000

1500

1000

0
Seconds

500

5000

6000

5500

48
6

63
6

59
2

28
98

100,000
Test files

62
93

54
92

Reiser 4

ReiserFS

Ext 3



attributed to the filesystem’s internal
structure, and turns out to be an advan-
tage when deleting files of GByte
magnitudes: Reiser 4 needs just 1.5 sec-
onds to delete a 6 GByte file, whereas
ReiserFS takes 12 seconds, with Ext 3
losing out at 14 seconds.

The Bonnie++ and IOzone bench-
marks return a mixed bunch of results.
Reiser 4 is extremely quick in many dis-
ciplines, but there are still a few places
where it loses out to the previous Reis-
erFS. An example of this would be
deleting in the random create and
sequential create tests with Bonnie++.
Reiser 4 continues to produce heavy CPU
load; most of the test results do not com-
pare well with Ext 3, and even with
ReiserFS at times.

The aggregate time taken to complete
the benchmarks is a good measure of
how well-balanced a filesystem is. You
can check the results in Figures 5a and
5b on the previous page. Based on total
time for the tests, Reiser 4 is the obvious
winner.

Seriously Quick
The slow.c benchmark
basically demonstrates
that Reiser 4 performs
better than ReiserFS
when required to write
multiple data streams
at the same time (see
Figure 6, right). In
comparison to writing
or reading a single file,
multi-stream opera-
tions really impact
ReiserFS performance-
wise. In contrast,
Reiser 4’s performance
is more or less un-
changed for this
operation.

Ext 3 can keep pace
with Reiser 4 for write
operations, but really
loses ground in opera-
tions with four parallel
streams. Reiser 4 gets
amazingly close to the
hard disk’s max trans-
fer rate of 27.6 MBytes
(according to hdparm 
-t). In future, the new
filesystem is expected

to break records using a compression
plugin, and achieve higher transfer rates
than the max physical transfer speed of
the drive.

There are not many benchmarks that
test the time required to mount and cre-
ate a filesystem. This can be the vital
statistic which prompts you to opt for a
specific filesystem in a production envi-
ronment. Reiser 4 still has some way to
go as regards mount times, taking
around 12 seconds for a 200 GByte parti-
tion. In comparison, ReiserFS takes 4
seconds, and Ext 3 less than 1 second to
mount the same partition. On a more
positive note, Reiser 4 took just 1 second
to create a partition, whereas ReiserFS
needed 4.

This difference is attributable to the
fact that Reiser 4 simply creates the
nodes required by the filesystem at this
point. The filesystem occupies only a
minimum of disk space. In contrast to
this, ReiserFS creates an area for logfiles,
and occupies about 30 MBytes on the
newly created partition from the outset.

Creating a 200 GByte Ext3 partition
reminded us of the bad old days with
DOS. Ext3 took no less than 5 minutes to
create the Ext2 inode table and the
resulting logfiles.

Finally, we put the Reiser 4 filesystem
through several crash tests in the Linux
labs. We pressed our lab system’s reset
button to cold boot the machine while
Reiser 4 was busy with various opera-
tions. Although we repeated the test 15
times, Reiser 4 showed no sign of weak-
nesses; the files we tested were all
readable, and the filesystem remained
undamaged.

Reiser 4 has a whole bunch of new
features and most benchmarks look
really promising. The only question is
whether Reiser 4 can live up to the
expectations of the Linux Community.
For almost two years, the Namesys
homepage announced that Reiser 4
would be released “this summer”. Now,
after completing internal crash testing,
the filesystem needs a lot of external
testing and feedback from the Commu-
nity. 

Linspire has already announced that it
will be integrating Reiser 4 with its distri-
bution as soon as possible, and Suse is
also interested in including Reiser 4 as
soon as it reaches an acceptable level of
stability.

Christmas Box
Currently, Namesys is looking for spon-
sors, as the DARPA funds can only be
invested in the development of security
features. So if you are looking forward to
installing Reiser 4 on your computer this
Christmas, you might like to consider a
donation to Namesys. ■

65www.linux-magazine.com October 2004

SYSADMINReiser 4

Figure 6: The slow.c benchmark tests the speed of the filesystem for
parallel write operations with multiple data streams. There is very little
sign of impact to Reiser 4’s performance, Ext 3 shows some impact, and
ReiserFS is noticeably slower.

23
.10

1 Stream

23
.17

22,5

20,0

17,5

15,0

12,5

10,0

7,5

5,0

0
MByte/s

2,5

25,0

23
.2

0

23
.3

6

2 Streams

13
.11

22
.4

4

Reiser 4

ReiserFS

Ext 3

23
.4

7

4 Streams

14
.5

20
.6

6

2 
GB

yt
e 

fil
e 

w
ri

te

27,5

25
.8

4

1 Stream

25
0822,5

20,0

17,5

15,0

12,5

10,0

7,5

5,0

0
MByte/s

2,5

25,0

26
.2

5

25
.9

2

2 Streams

12
.3

7

23
.3

2

Reiser 4

ReiserFS

Ext 3

26
.3

1

4 Streams

6.
17

13
.6

0

2 
GB

yt
e 

fil
e 

re
ad

27,5

[1] Reiser: http://www.namesys.com

[2] Snapshot of Kernel 2.6.5: http://www.
namesys.com/snapshots/LATEST/

[3] Patches for current kernel: http://www.
namesys.com/auto-snapshots/

[4] Linux kernel: http://www.kernel.org

[5] Fsbench: http://fsbench.netnation.com

[6] Bonnie++:
http://www.coker.com.au/bonnie++/

[7] IOzone: http://www.iozone.org

[8] Reiser 4 design: http://www.namesys.
com/v4/reiser4_the_atomic_fs.html

INFO


