
The examples in this article are based
on the list of computers in Listing 1. The
table shows the contents of a text file
that lists the computer name, IP address,
operating system, software, and RAM for
each computer. The idea is that, when a
computer is reconfigured or added to the
network, the system administrator
updates the information in this file.

Approach
The basic syntax for a gawk single-line
script is as follows:

gawk [options]U
'<I(>AWK program<I>'U
<I>input_file<I>

Larger AWK scripts should be stored in a
file. In that case, the syntax is gawk
[options] -f scriptfile inputfiles. The first
thing we would like AWK to do now is
give us a list of the computer names in
our sample file (Listing 1):

gawk '{print $1}' list

The field $1 refers to the first column. If
you need to know the IP address instead,
simply replace $1 with $2. $0 corre-
sponds to the full line. gawk '{print $0}'
list outputs the complete file on the
screen.

Examples
The following search key will give us the
whole range of information for a com-
puter called Goofy1:

gawk '$1=="Goofy1" {print $0}'U
list

In each line, AWK checks if the expres-
sion Goofy1 occurs exactly once in
column $1. If so, it prints the whole line,
{print $0}. Instead of the equal to opera-
tor (==), this example uses the
negation operator, !=, to ensure that
AWK will only run the command if there
is no match (see Table 1.) The gawk '$1
!= "Goofy1" {print $0}' list command
sends the contents of lines without the
Goofy1 string to standard output.

Automatic text file manipulation is
part of any admin’s daily grind.
This important task may involve

evaluating logfiles, creating or modifying
configurations, or adding new accounts.

For some tasks, the classic Unix pro-
gramming language AWK offers the most
efficient solution. AWK is a compact lan-
guage with syntax similar to C, which
makes AWK easy to learn for anyone
with C experience.

An AWK script parses the input file
line by line, searching for patterns.
When AWK finds a match, it performs a
specified action. If the programmer does
not specify a pattern, AWK simply per-
forms the action for each line. As you’ll
learn in this article, AWK is a very effi-
cient tool for searching any kind of text
file, including a previously prepared
table stored in text format. A formatted
text file, accompanied by a few simple
AWK commands or scripts, can serve as
a very simple and flexible data retrieval
system without the complication or
expense of an SQL database. This article
describes how a system administrator
can use AWK to obtain information
about computers on a local network.

The free (i.e., released under the GPL)
AWK version gawk [1] is a standard com-
ponent of any Linux distribution. And as
traditional Unix systems also include
AWK, the tool is particularly useful for
platform-independent scripting. If you
have Solaris, HP/UX and AIX servers as
well as Linux computers, AWK could
become an indispensable tool.

Text files formatted as tables are

easily searched and modified using

AWK. Admins in particular appreciate

AWK, which is typically installed on

any flavor of Unix.

BY NICO HOCHGESCHWENDER

AWK with a Text File Table

Regular Wizardry

30 December 2004 www.linux-magazine.com

AWKCOVER STORY

w
w

w
.photocase.de

AWK can search for ranges
in addition to individual
search patterns. The follow-
ing syntax uses two regular
expressions (see Table 2),
surrounded by slash charac-
ters; AWK compares them
with the whole line.

gawk '/Goofy1/,U
/Asterix/ U

{print $0}' list

The output is the whole area
from the Goofy1 search string
up to and including Asterix1.

Logical Operators
Search keys can be extended
and linked using Boolean
operators (Table 1) such as
the AND operator.

gawk '($3=="OSX") && U

($4=="Photoshop") U

{print $1}' list

Logical operands need to be
put in round brackets, and
this can cause errors, espe-
cially if you need to deal with
more complex expressions.
AWK has a logical OR opera-
tor, || in addition to the
logical AND.

Output
Thus far we have been happy

to send output to the screen.
But just like the shell, AWK is
capable of redirecting data
streams into files:

gawk '$1=="Obelix" U

{print $0 > "/home/U
linux/test"}' list

The preceding command
sends the data stream to a file
called test. If the file does not
exist, AWK will automatically
create it. You can redirect out-
put using >>. It is okay to
use the shell’s own redirec-
tion function for this simple
example, but the AWK variant
allows you to redirect output
to different files and view the
output on the screen at the
same time.

AWK also understands the
printf() function, which is
also used by C and the shell.
Admins can use printf() for
enhanced output formatting.
Just like its counterpart in C,
printf() does not wrap the
output but expects the pro-
grammer to add \n for new
lines.

gawk '{printfU
("%x\n",$5)}' list

In this example, we want
printf to output an integer

31www.linux-magazine.com December 2004

COVER STORYAWK

01 DagobertDuck 10.1.1.3 Debian Kylix 256
02 Goofy1 10.1.1.4 Solaris Mathematica 512
03 MickeyMouse 10.1.1.5 Debian Apache 512
04 LuckyLuke1 10.1.1.6 Debian Samba 256
05 LuckyLuke2 10.1.1.7 Debian Eclipse 256
06 LuckyLuke3 10.1.1.8 Suse Mupad 256
07 LuckyLuke4 10.1.1.9 Debian Mupad 128
08 LuckyLuke43 10.1.1.10 Debian Mupad 128
09 LuckyMickeyMouse 10.1.1.1 Debian Mupad

128
10 Asterix1 10.1.1.12 RedHat NetBeans 128
11 Asterix2 10.1.1.13 Debian NFS 256
12 Obelix 10.1.1.14 RedHat ICC 256
13 Apple1 10.1.1.15 OSX Photoshop

1024
14 Apple2 10.1.1.16 OS6 Photoshop 128
15 Apple3 10.1.1.17 OSX Photoshop 512

Listing 1: Computer list

a variable called sum. It out-
puts the value of the field and
the sum.

Regular Expressions
Regular expressions are often
useful if you need to manipu-
late or search text documents.
Meta-characters give you the
ability to create quite com-
plex search keys. AWK
supports regular expressions:

gawk '$1 ~ /[0-9]/
{print $0}'U
list

This script searches column one, $1, for
a search key that contains a line number
between 0 and 9. To tell AWK only to
search in $1, you need to explicitly
assign the column number to the search
key using a tilde (~) character. The
negation operator would achieve exactly
the opposite effect: !~ searches any
lines in which the regular expression
does not occur.

To find any computers whose names
end in Duck in the list, we need the fol-
lowing command:

gawk '$1 ~ /Duck$/ {print $0}'U
list

The dollar operator in /Duck$/ appends
the regular expression to the end of field
$1. /^Lucky/ finds any entries that start
with Lucky, such as LuckyLuke or Luck-
yMickeyMouse. Boolean operators
provide a useful extension to this func-
tionality:

gawk '$1 ~/(y|M)/ {print $0}'U
list

This command searches the first column
for occurrences of y or M. Table 2 gives
you an overview of meta-characters.

String Functions
AWK has a wide range of functions for
string replacement or substitution. In our
sample file, only one computer has a
Suse operating system. Let’s assume that
the administrator who manages this net-
work migrates this computer to Debian
and now needs to update the computer
list. Instead of using an editor, the admin

could do the job more elegantly using an
AWK string function.

gawk U

'{sub(/Suse/, "Debian", $3); U

print >> "/home/linux/test"}' U

list

The preceding command passes the
search key, /Suse/, the replacement text
"Debian", and the column $3, to the
sub() (substitute) function. Assuming
that the search key occurs in this col-
umn, the replacement text is substituted
in. If you need more information on
string functions, check out [3] and the
manpage.

Going Bigger
More complex AWK scripts allow you to
define your own functions, loops, and
multi-dimensional arrays. The GNU
variant can even handle TCP/IP commu-
nications [4]. ■

value in hex (%x) and then add a new
line (\n). The argument passed to gawk
is the content of column five. Refer to [2]
for more detail on this.

A New Start
The BEGIN and END constructs are use-
ful for outputting headlines or messages.
AWK runs any BEGIN commands before
parsing the input file and any END com-
mands after completing the last line.

gawk 'BEGIN U

{print "Search for MickeyMouse"}
$1=="MickeyMouse" {print $0}
END {print "-------"}' list

Besides string manipulation, AWK can
also handle numerical operations. The
last line in the file in Listing 1 contains
numbers, which AWK can manipulate
numerically or non-numerically. For
example, you can type the following
command if you need to know how
much memory you have in your lab
environment:

gawk '{sum+=$5; print $5, sum}'U
list

This mini-program adds field five in
every line and stores the current total in

32 December 2004 www.linux-magazine.com

AWKCOVER STORY

Nico Hochgeschwender is studying
Computer Science and majoring in
mobile robotics.When he has time to
spare, he enjoys mountaineering or
cycle racing.TH

E
AU

TH
O

R

[1] GNU AWK:
http://www.gnu.org/software/gawk/

[2] Printf examples from the gawk manual:
http://www.gnu.org/software/gawk/
manual/html_node/Printf-Examples.html

[3] Helmut Herold,“AWK and SED”: Addison
Wesley, 1991

[4] TCP/IP communication with gawk:
http://www.gnu.org/software/gawk/
manual/html_node/
TCP_002fIP-Networking.html

INFO

Operator Explanation
$ Field operator
++ – Postfix increment and decrement
++ – Prefix increment and decrement
^ Power
! Logical negation
+ - Sign operations
* / % Multiplication, division, modulo operation
+ - Addition, subtraction
< Less than
<= Less than or equal to
== Equal to
!= Unequal to
>= Greater than or equal to
> Greater than
~ !~ Compare to regular expression
&& Logical AND
|| Logical OR
= Assignment
+= Addition and assignment
-= Subtraction and assignment
*= Multiplication and assignment
/= Division and assignment
%= Modulo operation and assignment
^= Power and assignment

Table 1: AWK Operators

Expression Explanation
. Replaces an arbitrary character
^ Finds the following regular expression at the start of the

line
$ Finds the following regular expression at the end of the line
[] Finds any character between the square brackets
[a-d1-7] Character classes with ranges: all letters between a and d,

and all numbers between 1 and 7
X? Either no Xs or exactly one X
X* Either no Xs or more than one X
X|Z X or Z
XZ X immediately followed by Z

Table 2: Regular expressions

