
pos databases up to
date. Depending on
the configuration,
these jobs can be
extremely time-con-
suming and really
interfere with a
user’s daily chores.
So it makes sense for

admins to run them during the night.
cron can also take care of important

maintenance work that admins tend to
forget. For example, admins use cron to
rotate protocol files at regular intervals.

Fixed Schedule
There are any number of programs that
can handle scheduled job execution, but
cron is the great grandpa of them all, and
many of the other scheduling tools are
actually derived from the original cron.

cron is launched when the system
boots and immediately starts looking for
jobs to run. The daemon also checks
if the schedule has changed. This
means you can modify the schedule
without relaunching cron. Figure
2 shows an exam-
ple of a schedule,
also known as a

crontab. In typical Unix style, the lines
that start with a pound sign, #, are com-
ments.

Each job instruction comprises a time
and the program to run. The time is sub-
divided into five fields for minute, hour,
day, month, and weekday. Weekdays are
simply numbered, with 0 standing for
Sunday, but if you prefer to start the
week on a Monday, you can use 7 for
Sunday instead.

Don’t worry if this is getting you con-
fused, and you can’t remember what
order the fields are in: man 5 crontab
will give you details of the crontab syn-
tax. Even experienced sysadmins tend to
consult this manpage before setting up a
new job.

Instead of configuring static times, you
can also specify a scope. For example, an
asterisk, *, in a field means any value
from the beginning to the end, for exam-
ple, every minute. A value of * * * * *
would mean running a program every
minute of every hour every day. 37 * * *
* would launch the program 37 minutes
after the full hour.

If you take a close look at the list of
active processes on a Unix or Linux
system, you will probably discover

that it includes the atd and cron dae-
mons (see Figure 1). Both daemons are
used to schedule program launches.
Admins need to tell cron what to do, at
what time, and how often, although
most Linux distributions provide ready-
to-run cron jobs.

cron is particularly useful for time-con-
suming jobs that would stress even the
most modern computer temporarily and
thus might interfere with a user’s every-
day work. locate is a typical example.
This program is used to find files more
quickly. To do so it creates an index of all
the files it discovers on a system.

If an index is to be useful, it needs to
be updated regularly. And it is just as
important to keep the whatis and apro-

Unix systems need to handle a multitude of repetitive tasks:

rotating logfiles, creating backups, updating indices, and

managing databases. The traditional approach is to assign

these tasks to cron and at. Another tool called anacron takes

care of sleepy heads. BY MARC ANDRÉ SELIG

Insider Tips: Cron, at, anacron

The Scheduling Game

66 December 2004 www.linux-magazine.com

Admin Workshop: SchedulingSYSADMIN

w
w

w
.scx.hu

Figure 1: The atd and cron daemons sit in the background waiting to perform
scheduled tasks at predefined times.

Figure 2: The /etc/crontab file contains the master crontab, which is typically
provided by the distribution.

Incidentally, you might pre-
fer to use unusual time
values, such as 37 or 21,
rather than zero. This reduces
the risk of jobs running at the
same time, and causing
unnecessary load. The fields
for day and weekday have a
special feature: if both fields
are set to a value (or range),
cron will combine the values to create an
either/or condition. 37 2 1 * 0 will thus
launch a command at 02:37 on the first
of the month, and every Sunday.

Your Own crontab
In addition to the global /etc/crontab,
every user can create their own crontab.
A crontab file is installed onto the system
using the crontab command. To create a
crontab, type crontab -e (for “edit”). This
will launch an editor and load your
crontab in a temporary file.

After modifying the file, quit the edi-
tor, and crontab will copy the file to the
cron spool directory. This is the directory
that stores the contabs for local users
(typically /var/spool/cron/crontabs/).
crontab -l outputs a job list on your
screen. Users who prefer to store their
crontab in their home directory need to
point to the file to update the spool
directory : crontab ~/filename.

Of course, the admin is responsible for
updating the global crontab. As Figure 2
shows you, this file is typically quite
small, and only calls programs from sub-
directories. Most distributions store bash
scripts or even binaries in the cron.daily,
cron.weekly, and cron.monthly directo-
ries below /etc/.

Assigning cron jobs to subdirectories
helps to keep the master crontab read-
able. Each time an admin installs a new
package that needs a cron job, your dis-
tribution’s installation system will
typically copy the relevant scripts to one
of the cron directories. This removes the
need to edit the master file.

The global crontab has an additional
job field that stores the user ID with
which cron should run the job. The field
is directly behind the time specification.

Play it Once with at!
Whereas cron reads its crontabs to coor-
dinate recurring tasks, at takes care of
one-off jobs. at performs a job and then

removes it from the list. This is useful,
for example, if you need to send a mes-
sage to remind someone to do
something.

It only makes sense that at is an inter-
active program. The program expects
you to specify the job time, although it is
not too strict on the format. So to run a
program at midnight, you can just say at
midnight, or in five hours at now +5
hours. Of course, this does not mean that
you can’t be more precise if you need to
be: at 05:45 11 Jun 2005.

After typing the at command, you are
shown a prompt where you can enter
shell commands. [Ctrl]+[D] takes you
back to the normal shell, and tells at to
save the job. Figure 3 shows an example,
where at will be sending an email that
says “Time to go!” with a subject line of
“Ring ring” in five hours from now.

at handles job execution in an intelli-
gent way. It “remembers” what shell the
user was using (as this could affect the
command syntax!), the current working
directory, and the current environmental
variables. In other words, users just need
to type commands exactly as they would
when running them in the shell.

Avoiding Load
Commands that need a graphical inter-
face are exceptions to the rule, as at will
not store the $DISPLAY variable. This
said, there is an easy workaround to the
display problem: instead of typing xeyes,
simply type DISPLAY=:0.0 xeyes. If the
server is running on a different display,
you will need to modify the variable to
reflect your setup. Mechanisms such as
SSH agents will take effect as soon as a
user logs out.

The at spool directory (to which only
root has access) stores the jobs as simple
shell scripts. If you do not have root priv-
ileges, typing atq will give you an
overview of the outstanding jobs. atrm
removes jobs from the queue.

Users wanting to start time-
consuming jobs should add
an ampersand (&) to the at
prompt to tell the program to
run in the background. This
said, if 20 users have the
same idea, the system load
may reach a point where nor-
mal work becomes im-
possible. To handle this kind

of scenario, there is a special version of
at called batch.

Like at, batch accepts one or multiple
commands. However, batch will only
actually run the commands once the sys-
tem load falls below a certain threshold
value. This threshold is hard-coded into
the at daemon, but admins can change it
by launching atd with the -l value flag.

On legacy Unix systems, at jobs are
launched by a crontab entry that runs
the atrun program once a minute, but
most current Linux distributions provide
a genuine daemon called atd (see Figure
1).

anacron for Sleepy Heads
When cron and at were developed,
programmers simply assumed that com-
puters would be running 24x7. These
programs date back to the days when
Unix typically ran on heavy iron.

Home and office users are quite likely
to switch their computers off, and lap-
tops often power down to save batteries.
cron and at jobs are disabled when a
computer is down – and if the computer
remains switched off for a significant
time, important jobs just might never be
performed.

anacron allows for more imprecise
scheduling. The anacron application can
handle scheduling such as “round about
once a day.”

When you boot your computer,
anacron will check to see if a task needs
to be performed and, if so, will launch
the task. To prevent the computer taking
ages to boot, anacron adds a delay,
ensuring that each job will wait for the
previous job to finish.

If a user who normally switches his or
her computer off at night happens to
leave it switched on instead, anacron
will simply run the outstanding jobs at
their normal times. And that takes some
of the headaches out of system adminis-
tration. ■

67www.linux-magazine.com December 2004

SYSADMINAdmin Workshop: Scheduling

Figure 3: The at program performs one-off jobs. In this case, a user wants at
to send an email reminder in five hours time.

