
command line prompt. In other words,
any commands you enter manually
could be scripted with just a few lines of
shell script. With a minimum of effort,
admins can write scripts to automate
recurring jobs, using cron to run the
script or running it automatically at login

time. These scripts could manage back-
ups, statistical analyses, or even
availability checks.

The trick with shell programming is to
put small building blocks together in as
efficient a way as possible. As this article
will show, you can build very sophisti-

Ashell is simply an interface
between a user and the operating
system kernel. The shell performs

simple tasks and derives its name from
the fact that it surrounds the kernel just
like a seashell protects its inhabitant. But
it wasn’t long until shells started to get
smart, and now most shells have power-
ful features that almost put them on a
par with full-fledged programming lan-
guages. Bash, the Bourne Again Shell, is
the most popular of Unix shells at pre-
sent, and has easily outpaced its
predecessor, the Bourne Shell, and deriv-
atives such as the C shell, the TC shell or
the Korn shell.

Shell scripts cannot be compiled, and
this can affect their speed of execution.
On the other hand, experienced admins
can put together a shell script in no time
at all; shell scripts are easily readable,
and if the programmer uses the options
the shell provides, a script really is capa-
ble of solving complex problems.

A shell script is basically a series of
commands that a user could enter at the

For some it is just the command line,

but for others it is a full-fledged pro-

gramming language. Bash can be as

simple or as sophisticated as you

want it to be. We’ll show you a great

Bash script for checking up on your

web server, and you’ll meet with

many useful tips along the way.

BY PEER HEINLEIN

Building a Bash web admin script

Gaining Control

20 December 2004 www.linux-magazine.com

Bash scriptingCOVER STORY

When you are trying to achieve a specific
result with shell programming, the lack of
options or functions is not really the issue.
This said, it is often difficult to identify a sim-
ple approach. Many administrators are used
to performing recurring tasks manually in
the shell, but they refuse to script the exact
same steps and instead go through all kinds
of contortions to find a solution.

It is easy to check the number of user
accounts with user ID 0 in /etc/passwd: just
open /etc/passwd, search for zeros, and
count. But what if you want to script that?

In fact, there is no need to change anything:
just grep :0: /etc/passwd to filter any
accounts with user or group ID 0 from the
file, and use wc -l to count them. A simple

task, but even experienced admins can end
up with complicated approaches.To avoid
this, it makes sense to divide any administra-
tive work you want to script into smaller
steps.This makes it easier to identify the
right tools for the job.

Don’t start off by launching your favorite
editor to enter the script; instead try out all
the commands one by one in a terminal win-
dow, and check the output. If these manual
steps lead to the solution you need, you have
a script module that is worth “saving for pos-
terity”in a file.

Of course you are not restricted to the built
in bash commands. On the contrary, the real
strength of the shell is the amazing variety
of popular public domain tools.

Keep It Simple

cated and useful Bash scripts from small
blocks of code dedicated to specific
tasks.

A Web Server Administration
Script
Suppose you perform a series of web
server checks on a regular basis and you
would like to automate the tasks using a
Bash script. You would, perhaps, come
up with a script similar to the script
shown in Listing 1. As you can see, the
script consists of several different blocks
of code dedicated to different web server
administration tasks. You’ll learn about
the steps of the server check in the fol-
lowing sections.

The script in Listing 1 begins with the
definition of the interpreter. If this defini-
tion is missing, the default shell of the
user executing the script would attempt
to run the script commands. Today’s
Linux distros typically use /bin/bash as
the default shell, but an explicit defini-
tion at this point doesn’t hurt, and it can
help avoid potential errors.

You may have also noticed something

that isn’t referenced at the beginning of
the script: a config file. For simple
scripts, it is not worth creating a script
config file. If the parameters were more

complex, however, it might make sense
to create a special file below /etc; the
main script could then parse . /etc/server
check.conf – note that the dot and the

COVER STORYBash scripting

It is probably safe to assume that most read-
ers know how to use the bash shell
interactively. But commands that hardly ever
occur in interactive mode – variables, loops,
and control structures – may be a different
thing altogether.

Variables should be capitalized for the sake
of readability; they do not need to be typi-
fied (integer, string or the like).To assign a
value to a variable, leave out the dollar sign:

USER="Tux"
But if you want bash to replace a variable
with its current value, you need to use the
dollar sign prefix:

echo "Hallo $USER"
Variables are only visible within the current
shell. If you launch a sub-shell, the variables
you have been using will not be visible,
unless you have exported them explicitly to
create global variables:

USER="Tux"
export USER
You can combine these steps:

export USER=Tux
Variables also support simple math.You
need to place the mathematical operation in
brackets $[...]. Make sure you insert space
characters to separate the variable from the
brackets:

NEW = $[$OLD + OLD * 2]
Variables can occur in a text string. For
example, the following call

echo "Hallo $USER-User"
would output“Hallo Tux-User”in our exam-
ple.Variables that start with the same
letters, such as $USER and $USE could lead to
some confusion; it makes sense to put the
variable names in curly brackets to avoid
this:

echo "Hallo ${USER}-User"

Variables – the $ Sign in a Different Light

Let’s face it – if you’re building and testing your own web-based applications, designing & hosting your clients’ websites, or just own
a very busy site – what you really want is your own server. But sometimes the cost of running a dedicated environment is just too
prohibitive.
So wouldn’t it be great if you could share the cost of the server but not share the resources?
In other words, the full power of your own server - in a shared environment.
Hostway’s new VPS solution has a proprietary partitioning system that allows multiple server set-ups on the same box, with the guaran-
teed CPU, Disk Space and Network resources that you wouldn’t get in a normal Shared Environment.
Together with full root or control panel access, choice of open source software at install, IP- table fi rewall, 24hr Roll-Back backup option
and Hostway’s steadfast commitment to customer care, it adds up to a pretty unique solution.

Hostway – Hosting the way you want it.

from only £49.95 / month

“The power of Dedicated Hosting, at the price of Shared.”

call us now on 0808 180 1880 • sales@hostway.co.uk • www.hostway.co.uk/virtual
Domain Registration • Web Hosting • Resellers • E-commerce • VPS • Dedicated Servers | Australia • Canada • Germany • Korea • Netherlands • United Kingdom • United States

of the expression within the quotes, and
inserting the output instead of the com-
mand – a kind of cut & paste. There are
three different kinds of quotes, but the
shell will only accept one of them as the
command substitution character. What
we need is a so-called back tick.

The command uses date to obtain the
current date. The date manpage is
unclear in parts, and you need some
bash programming experience to read it
correctly. The Synopsis area of man date
shows a call to date +FORMAT, and the
manpage later goes on to explain the val-
ues that FORMAT can have. It is easy to
overlook the fact that you need to keep
the + parameter, as you are only substi-
tuting FORMAT. In other words, you
need the following syntax to substitute a
date: date +%Y%M%D.

The second problem is the blank in the
date output format, as in AUG 25, which
is often seen in logfiles. date +%d %e

will cause an error, as will date +%d
+%e. You also need to enclose the for-
mat block in quotes or ticks. This
indicates that the space character does
not mark the point where the next date
parameter starts: date +"%d %e" or
date +'%d %e' – but of course you can-
not use back ticks here, as they are
reserved for command substitution.

Is Your Server Running?
The first check the script will perform is
to determine if the web server is run-
ning. The code that performs this check
is as follows:

01 # Check if web server is
running

02 # Customized for Apache2, use
"/etc/init.d/apache"

03 # and "/usr/sbin/httpd -T"
otherwise.

04 if [$CHECK_WEB = "yes"] ;

path are separated by space characters.
This would even allow you to support
“includes” just like the ones used by
other programming languages, providing
some degree of modularity for more
complex programs. A file referenced in
this way would be inserted into the exe-
cution path and executed.

The Heading
Before we start recording information on
the status of the server, it is a good idea
to print a heading giving the host name
and the date of the check. This heading
information is generated using the fol-
lowing lines:

DATUM=`date +'%d %e'`
echo Subject: Server-StatusU
`date +"%b %e"` $HOSTNAME

This first line uses the technique of com-
mand substitution, executing the whole

22 December 2004 www.linux-magazine.com

Bash scriptingCOVER STORY

Listing 1: servercheck
001 #!/bin/bash
002 #
003 # Sample script for

monitoring a httpd server
004 #
005 # Heinlein Professional Linux

Support GmbH, 8/04
006 #

http://www.heinlein-support.d
e

007 #
008
009 # Generate secure tmp file

for output
010 umask 077
011 TEMPFILE=`mktemp /tmp/serverc

heck.tmp.XXXXXXXX`
012 # Minimum space for "/" in

percent
013 HDMINFREE="90"
014
015 # To-do list
016 CHECK_WEB=yes
017 CHECK_ACCOUNTS=yes
018 CHECK_HDMINFREE=yes
019 CHECK_LOGINS=yes
020 CHECK_STATUS=yes
021
022 #

023 # No config changes from this
point on.

024 #
025
026 DATUM=`date +'%d %e'`
027
028 echo Subject: Server-Status

`date +"%b %e"` $HOSTNAME
029 echo
030 echo
031
032 # Check if web server is

running
033 # Customized for Apache2, use

"/etc/init.d/apache"
034 # and "/usr/sbin/httpd -T"

otherwise.
035 if [$CHECK_WEB = "yes"] ;

then
036 if /etc/init.d/apache2 status

&> /dev/null && wget
--delete-after
http://www.domain.local/check
file.txt &>/dev/null ; then

037 # Web server is
running! Try reload, perform
syntax check before doing so

038 if /usr/sbin/httpd2
-t &>/dev/null; then

039 /etc/init.d/
apache2 reload &>/dev/null &&
echo " Web server running
and config reload okay."

040 else
041 echo "###

WARNUNG: Reload failed due to
CFG error! "

042 fi
043 else
044 # Web server not

running! Try to launch!
045 if /usr/sbin/httpd2

-t &>/dev/null && /etc/init.
d/apache2 start &>/dev/null ;
then

046 echo "###
WARNING: Web server was down,
restart successful."

047 else
048 echo "###

WARNING: Web server was down,
restart FAILED! "

049 fi
050 fi
051 fi
052
053 # Check /etc/passwd for

hidden root users

then
05 if /etc/init.d/apache2 status

&> /dev/null && wget --delete-
after http://www.domain.
local/ checkfile.txt &>/dev/
null ; then # Web server
is running! Try reload,
perform syntax check before
doing so

06 if /usr/sbin/httpd2 -t
&>/dev/null; then

07 /etc/init.d/apache2
reload &>/dev/null
&& echo " Web server
running and config
reload okay."

08 else
09 echo "### WARNUNG:

Reload failed due to
CFG error! "

10 fi
11 else
12 # Web server not

running! Try to launch!
13 if /usr/sbin/httpd2 -t

&>/dev/null && /etc/
init.d/apache2 start
&>/dev/null ;then

14 echo "### WARNING:
Web server was down,
restart successful."

15 else
16 echo "### WARNING:Web

server was down,
restart FAILED! "

17 fi
18 fi
19 fi

The second if condition is as an example
of the elegant programming style the
shell supports. The start/stop script
/etc/init.d/apache has an option for
checking if the Apache daemon is run-
ning. Instead of interpreting the text
output from this command, we’ll use the

return value of the program. The return
code or errorlevel will be 0 for a program
that completes correctly; this is equiva-
lent to TRUE in the shell’s binary logic,
whereas any error will return a code
with a value other than zero, and thus
the binary equivalent of FALSE.

As the if condition simply checks for
true/false statements, you can substitute
the command here: if /etc/init.d/apache
status ; then.... Exactly the same
approach is used just two lines down.
The httpd, also known as Apache, has a
-T option for checking the configuration
– again the return value can be true (if
the configuration is okay) or false (if a
syntax error occurs). This test is particu-
larly useful as it avoids killing a running
web server by attempting to reload after
inadvertently adding a fatal error to the
web server configuration.

The script does not entirely rely on
/etc/init.d/apache status to check the

23www.linux-magazine.com December 2004

COVER STORYBash scripting

Listing 1: servercheck
054 if [$CHECK_ACCOUNTS = "yes"

] ; then
055 cat /etc/passwd | grep ":0:"

| grep -v ^root: > $TEMPFILE
056 ACCOUNTS=`cat $TEMPFILE | wc

-l`
057 if [$ACCOUNTS -ge 1] ; then
058 echo "### WARNING:

Discovered $ACCOUNTS
additional accounts with root
privileges!"

059 cat $TEMPFILE
060 else
061 echo " No

additional root accounts."
062 fi
063 fi
064
065 # Check for HDMINFREE
066 if [$CHECK_HDMINFREE = "yes"

] ; then
067 KBISFREE=`df | grep /$ | cut

-b 52-54`
068 INODEISFREE=`df -i | grep /$

| cut -b 47-49`
069 if [$KBISFREE -ge $HDMINFREE

-o $INODEISFREE -ge
$HDMINFREE] ; then

070 echo "### WARNING:

$KDISFREE% / INODEISFREE% of
root partition occupied! "

071 else
072 echo " Hard disk space

for root partition okay."
073 fi
074 fi
075
076 # Check for failed logins
077 # Modify grep pattern to

reflect your own log format
if needed.

078 if [$CHECK_LOGINS = "yes"]
; then

079 cat /var/log/messages | grep
"$DATUM" | grep -i "FAILED "
| grep -i "root" | grep -v
"tty" |> $TEMPFILE

080 FAILLOGINCOUNT=`cat $TEMPFILE
| wc -l`

081 if [$FAILLOGINCOUNT -ge 15]
; then

082 echo "### WARNING:
More than 15 failed root
logins! "

083 elif [$FAILLOGINCOUNT -ge 1
] ; then

084 echo " Discovered
following failed root

logins:"
085 fi
086 cat $TEMPFILE
087 fi
088
089 # Generate status:
090 if [$CHECK_STATUS = "yes"]

; then
091 echo
092 echo "General server status:"
093 echo

"-----------------------"
094 echo
095 echo "Current load in last 15

minutes: `cat /proc/loadavg |
sed "s/.* .* \(.*\) .*
.*/\1/"`"

096 echo
097 echo "Memory usage:"
098 cat /proc/meminfo | head -n 3
099 echo
100 echo "The following users are

currently logged on:"
101 who
102 fi
103 echo
104 echo
105 rm $TEMPFILE

tem, the script outputs a warning. Other-
wise the script states that no root users
were found.

Checking Hard Disks for
Minimum Free Space
The next check looks to see whether the
server hard disk has sufficient free
space? This code block in Listing 1,
which begins with the line:

Check for HDMINFREE

uses the HDMINFREE variable, which is
defined earlier in the script:

Minimum space for "/"U
in percent
HDMINFREE="90"

HDMINFREE defines the minimum free
disk space threshold that will trigger a
warning. Placing this value in a variable
allows you to change the setting more
easily than if the value were hard coded
into the logic of the Bash script.

How do you discover the current level
of disk usage? There are two tools for
this job: du gives you the hard disk
usage, and is not very useful within the
confines of our script. df shows you the
free space on one or multiple partitions,
but in a fairly verbose way. The best
approach is to do what any human
would do: launch df, locate the lines for
the root partition, and read the numbers
in front of the percentage signs.

Instead of checking for the partition
name (hda3), it is a lot easier to look for
a slash character / at the end of a line.
This makes it easier to apply the script to
other configurations. In other words, we
just grep the output from df for /$, where
$ is the symbol for end of line (EOL).

One alternative might have been to
use df / , but df would have given us out-
put with column headers, and that
would have meant using tail -n1 to filter
the line. In other words, we would not
have made things any easier.

cut -b 52-54 and cut -b s47-49 surgi-
cally remove the percentage, which we
can then store in a variable for later com-
parison in the if condition. Watch out for
the pitfalls here: if you cut 53-54, the
script would just take the two zeros from
100 percent, and that would mean the
script giving you unreliable results when

you are most in the need of accuracy –
that is when the disk is completely full.

The if condition in the square brackets
simply contains the abbreviation of a test
command. If we expand this, we get if
test $HDISFREE -ge $HDMINFREE ; then
– these notations are equivalent. test can
check use variables or files to check for
true/false conditions. In our case -ge
stands for “greater than or equal”; in
other words, we are checking to see if
the disk space usage for the system is

Apache status. Instead, it uses wget to
check if a file download works out;
admittedly this is really just our way of
demonstrating the use of the tool. Again
wget returns a true/false code which
leads us to the if true AND true ; then...
expression. If one of these tests does not
check out, the script moves on to the
else branch.

The text output from the commands in
the if conditions here is redirected to
/dev/null. The idea behind this script is
to give us a status report; output from
the programs themselves would only get
in the way of that.

Checking /etc/passwd for
Hidden Root Users
Since you are already checking to see if
the web server is running, you might as
well also check to see if any hidden root
users are currently logged in to the sys-
tem. The code in Listing 2, which is an
excerpt of Listing 1, checks /etc/passwd
for hidden root users.

As you can see, the code in Listing 2
uses a grep statement to search the con-
tents of the /etc/passwd file to see if any
users with root status are currently using
the system. Results of successful
searches for root users are accumulated
in ACCOUNTS, and, if ACCOUNTS
reveals one or more entries indicating
that a root user has gotten onto the sys-

24 December 2004 www.linux-magazine.com

Bash scriptingCOVER STORY

01 # Check /etc/passwd for hidden
root users

02 if [$CHECK_ACCOUNTS = "yes"]
; then

03 cat /etc/passwd | grep ":0:" |
grep -v ^root: > $TEMPFILE

04 ACCOUNTS=`cat $TEMPFILE | wc
-l`

05 if [$ACCOUNTS -ge 1] ; then
06 echo "### WARNING:

Discovered $ACCOUNTS
additional accounts with root
privileges!"

07 cat $TEMPFILE
08 else
09 echo " No additional

root accounts."
10 fi
11 fi

Listing 2

01 while ["$#" -gt 0] ; do
02 case $1 in
03 --web)
04 CHECK_WEB=yes
05 shift
06 ;;
07 --accounts)
08 CHECK_ACCOUNTS=yes
09 shift
10 ;;
11 --hdminfree)
12 CHECK_HDMINFREE=yes
13 shift
14 ;;
15 --status)
16 CHECK_STATUS=yes
17 shift
18 ;;
19 --logins)
20 CHECK_LOGINS=yes
21 shift
22 ;;
23 --all)
24 CHECK_WEB=yes
25 CHECK_ACCOUNTS=yes
26 CHECK_HDMINFREE=yes
27 CHECK_LOGINS=yes
28 CHECK_STATUS=yes
29 shift
30 ;;
31 *)
32 echo "Usage: $0

[--web] [--accounts]
[--hdminfree] [--logins]
[--status] [--all]"

33 exit
34 ;;
35 esac
36 done

Listing 3: Evaluating
Parameters

lows a familiar pattern. We can grep for a
combination of words to filter password
errors out of local and SSH-based login
attempts. Of course it would have been
possible to add a call to | wc -l to count
the invalid login attempts, but the file-
based approach allows us to add the
suspicious login attempts to the status
report. After all, the idea behind this
script is to give the administrator all the
information he or she needs in a consoli-
dated report.

Typos in password entries can and do
happen every day – we do not want the
script to alert the admin to a failed login

that was caused by a user simply typing
the wrong password. In this case. failed
login attempts start to become suspi-
cious when a flood of failed logins
occurs within a short period of time.
This kind of behavior is indicative of a
brute force attack on the server. If the
server is the subject of a brute force
attack, the admin needs to know about it
in a hurry. 15 failed login attempts is a
useful threshold. A brute force attack
could involve thousands of failed login
attempts over a period of several days. It
is not much help if you discover a bunch
of failed login entries in your logfiles

equal to, or greater than, the threshold
value.

Again, this is just the true/false return
code of the programs. If the statement is
true, such as in test 5 -ge 3, test returns a
value of true. If the statement is false, as
in test 3 -ge 5, test returns false. The if
condition here actually has nothing to do
with the numbers, it simply looks for a
true or false value between if and ; then.

Check for Failed Root Logins
In the next block of Listing 1, the script
searches for repeated root login attempts
with the wrong password. This code fol-

26 December 2004 www.linux-magazine.com

Bash scriptingCOVER STORY

Bash has typical command and loop struc-
tures just like any other programming
language.They do not play an important role
within an interactive context. if or Select Case
conditions do not make much sense if a user
is sitting in front of the keyboard, and can
check his or her options before making a
decision.The following if condition:

if bla1 ; then
cmd1
elif bla2 ; then
cmd2
else
cmd3
fi

demonstrates the classical format, as used
by more or less any high level programming
language. Note the semicolon in front of
then, and the option of combining else if to a
more elegant elif.

The test expression, bla1, will return TRUE or
FALSE. But it can reflect the value assigned to
a variable (if $check ; then...), or the return
value of a program that you have called (if
mkdir /tmp/test ; then.) A program that exits
cleanly will return a value of TRUE, or FALSE in
case of error. Most programming languages
also have a select condition; select has the
following syntax in bash:

01 case "$VAR" in
02 TEST1)
03 cmd1
04 ;;
05 TEST2
06 cmd2
07 ;;
08 *)
09 cmd3
10 ;

11 esac

Note the double semicolons at the end of
each case block. *) is a special expression that
matches any conditions not already met.
Select structures are often used to collect
parameters, or to output help for parameters
in some cases.

This for loop

for A in n1 n2 n3 n4 ... nn ; do
cmd $A
done

iterates against the elements n1 through nn.
$A accepts the current value of the element
line by line.The list could also be a variable
containing multiple space separated values:

LIST="Harry Sally U

Martin Yvonne"
for A in $LIST ; do
echo "Hallo $A"
done

It is interesting to note that bash can only
handle a limited number of parameters; this
means that rm * will fail in directories with
many thousands of files. In contrast to this,
for A in * ; do rm $A ; done will work perfectly,
expanding * as a file wildcard.

while condition ; do
cmd
done

will iterate through the loop while condition
returns a value of TRUE. So we need a test
command.The following example counts
from 0 to 1000.

i=0
while test $i -le 1000 ; do
echo $1
i = $ [$i + 1]
done

or if we use test shorthand:

i=0
while [$i -le 1000] ; do
echo $1
i = $ [$i + 1]
done

Whereas a while loop will keep going as long
as the condition is fulfilled, an until loop
stops iterating as soon as the condition is
fulfilled:

until condition ; do
cmd
done

Theoretically we could write all of these syn-
tactical examples in a single line, using a
semicolon (;) to separate them: if bla1 ; then
cmd1 ; cmd2 ; else cmd3 ; fi. Or using a for loop:
for A in $LISTE ; do echo "Hallo $A" ; done.

Newcomers will be happy to hear that bash
has a debugging option; the debugger is a
big help if you are trying to locate logical
errors or typos (see Bash Debugging.)

The script file itself does not need a special
name, although you might like to keep to
the convention of adding an .sh extension.
However, you will need to set the file permis-
sions to make your script executable, that is,
you must set the x bit for users who need to
run the script.

Although you can create fairly complex pro-
grams with shell scripts – including a GUI if
needed , quick (but permanent!) hacks are a
more common use. Shell scripts are thus an
invaluable tool for any admin, especially for
admins who do not have the time or inclina-
tion to learn a higher level scripting
language like Perl or Python just to achieve
the same results with more or less the same
amount of code.

Control Structures

while investigating a break
in.

Status Information
The final block of code in
Listing 1, which begins with
the line:

Generate status:

gives the admin more useful
information. The /proc direc-
tory proves especially useful;
the innumerable virtual files
below /proc have a wealth of
system information that can
be parsed and processed
using cat, grep, cut, head, and
tail, without needing access
to operating system internals,
and without using a high
level programming language.
/proc/loadavg lends itself to
all kinds of hacks to grep
information on the CPU load
and memory usage from the
top output.

Automated cron Job
After running the script man-
ually to check that everything
is working to your satisfac-
tion, you can add a crontab
entry to run the script auto-
matically with root privileges.
The mailer will automatically
create a Subject: ... line for
the email message generated
by the script:

57 23 * * * U

/usr/local/binU
/servercheck
| sendmail U

admin@bla.local

Of course, we could have
added a section to create the
email message to the script
proper, but we didn’t want to
lose the ability to run the
script manually in a terminal
window as a quick manual
system check.

There’s Always Room
for Improvement
A script is more flexible if it
supports command line para-
meters. If we need to disable
a module in our script (such
as the hard disk or root login
check), we need to launch an
editor and modify the
CHECK_ variables. There is a
more elegant way of doing
this.

The first nine command
line parameters are stored in
special variables called $1,
$2, $3 … $9. $0 stores the
command itself, and $# gives
us the number of parameters.

The shift command can be
useful here: it deletes the first
parameter and moves all the
other parameters one position
to the “left.” In other words,
what used to be $2 now
becomes $1. We can use a
while loop to set the CHECK_
variables depending on the

27www.linux-magazine.com December 2004

COVER STORYBash scripting

01 if $CHECK_HDMINFREE ; then
02 GETPERCENTAGE='s/.* \([0-9]\{1,3\}\)%.*/\1/'
03 KBISFREE=`df | grep /$ | sed -e "$GETPERCENTAGE"`
04 INODEISFREE=`df -i | grep /$ | sed -e

"$GETPERCENTAGE"`
05 if [$KBISFREE -ge $HDMINFREE -o $INODEISFREE -ge

$HDMINFREE] ; then
06 echo "### WARNING: $KDISFREE% /

INODEISFREE% of root partition occupied! "
07 else
08 echo " Hard disk space okay."
09 fi
10 fi

Listing 4: Regexp-based Search

parameters (see Listing 3, “Evaluating
Parameters.”).

To parametrize the script, all we need
to do is insert this piece of code instead
of the variable declarations in lines 15
through 20 of Listing 1.

Best Behavior
Well-behaved scripts clean up when
they’re done, removing temporary files.
Under normal circumstances, rm $TEMP-
FILE at the end of the script could handle
this, but if the script is interrupted, it
would not reach this step.

Although admins could probably live
with the disk space loss, as the tempo-
rary file is quite small, the temporary file
might contain sensitive information that
should not be left up for grabs in the
/tmp directory.

trap is a special function that can lis-
ten for specific signals and perform a
predefined task. In this example, we only
need to monitor the three most impor-
tant signals: SIGKILL (kill -9 pid),
SIGTERM (kill -15 pid), and SIGINT,
which occurs when a user presses Ctrl-C
(alias signal 2). If you need more infor-
mation on signals, try man 7 signal.

If one of these signals occurs, we need
to delete the temporary file – if it exists –
and quit the script:

trap "test -e $TMPILE && rm U

$TMPFILE ; exit" 2 9 15

Some sections of the sample script could
be more compact and shorter – but this

would impact the script’s readability,
especially for inexperienced users. For
example, we could set the variables at
the start of the script, CHECK_WEB,
CHECK_ACCOUNTS, and so on, to true
rather than yes to support shorter if con-
ditions:

CHECK_WEB=true
if $CHECK_WEB ; then

cmd
fi

Bash would expand the variables and
launch the true program, which is
located in /bin/true and returns a binary
true. Its counterpart is /bin/false.

Continuing in the same vein, we could
slim down the call to grep: cat
/etc/passwd | grep ":0:" ... (line 55)
could be abbreviated to grep ":0:"
/etc/passwd, removing cat altogether.

Additionally, we could use either AWK
or regular expressions to revamp the
hard disk space check and give us more
elegant code. This said, regular expres-
sions are not everyone’s idea of fun. And
we would have needed to search for the
percent character to extract the preced-
ing values, as shown in Listing 4.

Regular expressions might have been
preferable to the grep escapades in line
79. If you like, feel free to define a regexp
pattern to match the logfile lines. On the

28 December 2004 www.linux-magazine.com

Bash scriptingCOVER STORY

Bash Tutorials:

• http://www.linuxfibel.de/bash.htm

• http://www.tldp.org/HOWTO/
Bash-Prog-Intro-HOWTO.html

• http://www.tldp.org/HOWTO/
Bash-Prompt-HOWTO/index.html

• http://www.tldp.org/LDP/abs/html/

Special Shell Scripting Tutorials:

• http://www.linuxfibel.de/bashprog.htm

• http://www.freeos.com/guides/lsst/
ch03sec03.html

• http://quong.best.vwh.net/shellin20/
#LtohTOCentry-11

Good Bash Fan Pages and Script Collections:

• http://www.shelldorado.de

Tutorials and How-tos

other hand, our sample script just goes
to prove that simple steps will take you
to your goal, possibly in a more round-
about way.

Individual circumstances may necessi-
tate other checks, but considering the
fact that thousands of leased root servers
in data centers are not checked at all,
and have only survived so far by pure
luck, the sample script is a definite
improvement. This said, the script is not
recommended for monitoring server
farms, or in scenarios where higher secu-
rity levels apply.

The script does its job without any
fuss. No more, and no less – and that
makes it a useful example of shell script-
ing within the context of the
administrator’s daily routine.

Tools for Bash
Besides the builtin shell commands, a
number of useful external programs are
also used with Bash.

AWK is a powerful pattern-action pro-
gramming language that is useful for
editing data in tables. (You’ll learn more
about AWK in the article titled “Regular
Wizardry” later in this issue.)

cut cuts single lines from a given posi-
tion in the text. head outputs the first 10
lines of a file by default, and its counter-
part tail outputs the last 10 lines.

join merges the lines in two files with
a common index field. split splits a file
into multiple individual files.

nl enumberates the lines of a file. This
is useful if you need to create numbered
listings of records.

The ubiquitous cat tool outputs files to
standard output or or redirects standard
output to files. tac is like cat only it out-
puts a file backwards, starting with the
last line.

tee redirecs input to a file, and sort
sorts files. The list goes on. ■

Peer Heinlein has been
an Internet Service
Provider since 1992.
Besides his book on
Postfix, Peer has pub-
lished two other
books on "LPIC-1" and
the "Snort" Intrusion
Detection System with Open Source
Press. Peer's company, www.heinlein-
support.de, educates and trains
administrators, and provides consulting
and support services all over Europe.

TH
E

AU
TH

O
R

It is a little known fact that bash has a
debugging feature.You can use set at the
beginning of a script to set Xtrace mode, for
example:

• set -x tells the shell to output the
expanded form of each line before exe-
cuting the commands in the line. In other
words, the shell will first insert filenames
for any wildcards and also replace vari-
ables with their current values. * set -v
enables verbose output of any com-
mands executed by the script. * set -n
performs a syntax check, but without
running the script (no-exec mode).

A well-placed echo $VARIABLE, or simply
echo xyz, wherever appropriate in the script
or loop, is also an invaluable troubleshoot-
ing tool. It tells you exactly what a program
is doing, and breakpoints can tell you how
often a script has iterated through a specific
loop.

Bash Debugging

