
The truth is that hardly anyone is
busy waiting for Perl 6. The humon-
gous module collection on CPAN

keeps thriving; an average of three dozen
new submissions and updates reach the
repository on any given day, and they’re
all written in Perl 5, not Perl 6.

Perl 6 has a very agile community
behind it, though. The design is fairly
mature already, no radical changes are
expected. Development of the virtual
machine named “Parrot” has shown first
results. The Perl 6 compiler, which trans-
forms Perl 6 into bytecode for the VM, is
currently under development. The lack
of publically announced deadlines does-
n’t mean anybody is slacking. The
mailing lists are active, and the team

does have internal milestones, although
they do not publish these milestones in
order to avoid creating unproductive
hype around the project. Perl 6 will be
released when it’s ready, and that’s that.

Two O’Reilly books on Perl 6 have
been published already. Writing a book
on a language that hasn’t been released
is a curious undertaking, if you think
about it, knowing that the newly pro-
posed Perl 6 syntax could still be
changing and parts of the books will be
outdated by the time they are published.

Explore the Future Today
For those who can’t wait to get their fin-
gers on Perl 6, a number of crafty people
have provided a bundle of Perl 5 mod-

ules. These modules simulate the future
behavior of Perl 6 by warping the way
Perl 5 interprets source code.

The entire collection is available on
CPAN as a module bundle called Bun-
dle::Perl6. When installed, 27 different
modules get downloaded from CPAN.
Their scope reaches from defining new
variable syntax in Perl6::Variables to pro-
viding majorly advanced regular ex-
pressions with Perl6::Rules (see Table 1).

One of the most significant syntactical
changes is the sigils in front of variable
names: In Perl 5, to retrieve the value of
a Hash %hash associated with the key
"key", you have to say $hash{key}. In
Perl 6, this will be %hash{key}. While
the reasoning in Perl 5 was: “The sigil

Perl 6 was announced in 2000, but it is still under development with no shipping date in sight. And people keep wonder-

ing: what’s the deal with Perl6? BY MICHAEL SCHILLI

An Inside Look at Perl 6

A New Star is Born

COVER STORYPerl 6 Preview

WWW.BYTEMARK.CO.UK TEL: 0845 004 3 004

• Telephone and email support
• 3000MB storage, 100Mb connectivity
• Free NFS backup storage and DNS service

Hosting with root
access from
£15 per month

“I just wanted to say that I’m very
impressed with the server –
we survived the Slashdotting two
weeks ago more or less unscathed.
Brilliant stuff!”
Hugh Hancock, machinima.com

ALSO AVAILABLE…

Dedicated servers from £80pm and ADSL from £15.40

wise operations, will go away. Since
these are rarely used in high-level Perl,
they are going to be replaced by admit-
tedly awkward looking two-byte
combinations: +&, +| and +^ are the
Perl 6 bitlevel operators. The goal with
this move was Huffman coding: rarely
used syntax can be more complicated,
and popular constructs should be as
short as possible to save typing and
make reading the code easier.

Named Parameter Lists
Perl 5 functions accepting long parame-
ter lists require developers to remember
the exact ordering:

buy($count, $price, $item);

But who can remember the function sig-
nature without looking up a (hopefully)
available API manual? What comes first,
$price or $item? To free the programmer
of this burden, named parameter lists are
often used in Perl 5:

buy(count => $count,
item => $item,
price => $price);

This way, arguments can be passed in
random order. In Perl 5, programmers
need to manually add code to allow for
this syntax: Functions typically feed all
incoming arguments as name-value pairs
into a hash and then make sure that all
required ones are present.

Perl 6, however, lets you specify the
argument list as part of the function defi-
nition, like in

Perl 6
sub buy($count, $price,U
$item) { ... }

which eliminates the typical Perl 5
workaround with <\@>_ as in

Perl 5
sub buy {

my ($count, $price, U

$item) = @_;

...
}

In Perl 6, all parameters in the function’s
signature are automatically aliased to the
corresponding lexically scoped variables
named $count, $price, and $item.

This syntax not only handles ordered
parameter lists, but also named lists:

01 # Define it
02 sub buy($count, $price,

$item) {
03 print "Buying $count

items at $price<\>n";
04 # ...
05 }
06
07 # Call it
08 buy(count => 1,
09 item => "TV",
10 price => 999);

and again the order in which arguments
are provided to the function does not
matter. Perl 6 parameter list handling for
subroutines is available for Perl 5 today
with Perl6::Parameters from CPAN. How-
ever it does not handle named parameter
passing yet.

The OO Syntax
Perl 5 suffers from a patched-on object
orientation: Clearly not part of the origi-
nal language design, the object-oriented

indicates what you get” (a scalar in this
case, since the stored value is a scalar),
in Perl 6 the mantra goes “The sigil
shows the variable type.”

Listing 1, hash.pl, shows this by
pulling in Perl6::Variables for Perl6’s new
variable syntax and Perl6::Say. The latter
exports the say() function, a fancy new
way of printing a message with a new-
line at the end.

Quantum Leap
Damian Conway’s quantum superposi-
tions also make it into Perl 6 as a standard
feature. The fact that a single variable can
hold several values as a superposition
might look disturbing at first, but it allows
for breathtaking constructs.

Junctions, as they are called in Perl 6,
superimpose one or more values onto a
variable. Imagine, a scalar $age could be
7 and 42 at the same time, both $age
== 7 and $age == 42 are true! This
feature is available today in the Quan-
tum::Superpositions module on CPAN. In
[3] earlier this year, you’ve already seen
a practical example of what junctions
can be used for.

Perl 6 will not only accept calls to
any(), all(), one(), none() to obtain
superpositions, but it will provide opera-
tors (&, | and ^) entirely devoted to this
new feature. Now, instead of using any()
for having $hand hold all possible Black-
jack counts of four aces, as in

$hand = any(4, 14, 24, 34, 44);

you can simply say

$hand = 4 | 14 | 24 | 34 | 44;

This of course means that the Perl 5
meanings of (&, | and ^), used for bit-

34 December 2004 www.linux-magazine.com

Perl 6 PreviewCOVER STORY

01 use Perl6::Variables;
02 use Perl6::Say;
03
04 my %ages = (
05 Huey => 4,
06 Dewey => 5,
07 Louie => 6);
08
09 for(keys %ages) {
10 say "$_ is %ages{$_} years

old.";
11 }

Listing 1: hash.pl

01 1 my $agesref = \%ages;
02 2 say "Huey is $agesref{Huey}

years old.";

Listing 2: hashref.pl

01 use Perl6::Classes;
02
03 class Car {
04
05 # Only with Perl6::Classes,
06 # Perl 6 takes care of it
07 submethod BUILD {
08 my %hash = @_;
09 $.model = $hash{model};
10 }
11
12 has $.model;
13
14 method drive() {
15 print("$.model drives\n");

}
16 }
17
18 my $car = Car->new(
19 model => "Acura Integra");
20
21 $car->drive();

Listing 3: class.pl

Also, the dot has replaced the arrow in
method calls:

$car.drive();

Within a class definition, what used to
be $self is now just topicalized in $_, so
$_.drive() or, even shorter, .drive() will
work just fine.

Regex Overhauled
Probably the biggest change in Perl6 is
the complete overhaul of the regular
expression syntax. Perl 5’s Regexes are
already the leading edge, but Perl 6’s
grammars and rules go far beyond that.

Grammars are like classes, containing
rules like methods. Listing regex.pl
shows an example.

Reminiscent of a throwback to lex/
yacc grammars, Perl 6’s grammar serves
exactly the same purpose as these
ancient dinosaurs. That makes it possi-
ble to parse even the most complex
syntactic structures – maybe even Perl 6
some day! Unfortunately, Perl6::Rules
pushes Perl 5’s regular expression engine
to the limit, regex.pl will currently just
crash the program and cause a segfault.
Hopefully, this will be fixed soon.

Perl 6 regexes are easier to read than
their Perl 5 counterparts. “/x modifier
mode,” in which whitespace is ignored
and comments are allowed, is now the
default. And there’s the incredibly useful
words modifier, which is activated via
the leading :w as in

rule fraction :w U

{ <\>d+ / <\>d+ }

and interprets regex whitespace smartly.
Inbetween two words in the regex (think
<\>w), it inserts <\>s+, and inbe-
tween words and non-words (like
between <\>d+ and /, and also
between / and <\>d+ above), it inserts
<\>s* to allow zero or more spaces.
That’s most likely what you’ll want.

There’s lots more to Perl 6. Subrou-
tines and variables can have attributes,
Variables can be strictly typed. No more
typeglobbing. Formats reworked from
the ground up. True exception handling.
The modules in Perl6::Bundle as listed in
Table 1 allow for trying out many new
features – but be careful, some of them
represent Perl 6 in a state it is no longer
in. It’s a moving target, after all.

All I can give you at this time of writ-
ing is a snapshot of some of the most
intriguing new features of Perl 6. It will
certainly be exciting to play with Perl 6
once it hits the shelves! ■

(OO) syntax was added later on with
very little language modification. This
resulted in an OO implementation in
“user space”: packages as classes,
objects most often implemented as
blessed hashes and an inheritance model
that requires a lot of manual twiddling.

Perl 6 fixes all this, embedding the
class and method keywords, attributes
(Perl 6 lingo for instance variables),
automatic accessors, and inheritance
directly into the language.

Listing 3, class.pl, shows how
Perl6::Classes somewhat simulates the
new behavior. As of right now, early
adopters have to jump through some
hoops, though, using a BUILD sub-
method for the constructor, while Perl 6
will initialize new objects automatically.
Inheritance is requested by the is key-
word, class Car::Electric is Car indicates
that Car is the base class of the class
modeling electric cars.

But inheritance isn’t the only class
relationship in Perl6. Roles define class-
like behavior. Using role instead of the
class keyword, roles can provide meth-
ods, but no attributes. Classes can
assume roles by using the does keyword,
but subclasses don’t inherit them. Car
does FuelConsumer in a class definition
indicates that Car utilizes FuelCon-
sumer‘s methods, but that’s not an
inherent feature of Car, but rather an
add-on that shouldn’t be part of the
inheritance tree. Looking at Listing 3, if
we were truly running Perl6, then the
constructor would look different:

my $car = Car.new(
model => "Acura Integra");

36 December 2004 www.linux-magazine.com

Perl 6 PreviewCOVER STORY

Module Description
Attribute::Handlers Simpler definition of attribute

handlers
Attribute::Types Attributes that confer type on

variables
Attribute::Overload Attribute that makes overloading

easier
Attribute::TieClasses Attribute wrappers for CPAN Tie

classes
Attribute::Util A selection of general-utility

attributes
Attribute::Deprecated Mark deprecated methods
CLASS Alias for __PACKAGE__
Class::Object Each object is its own class
Coro create and manage coroutines
Exporter::Simple Easier set-up of module exports

with attributes
NEXT Provide a pseudo-class NEXT for

method redispatch
Scalar::Properties Run-time properties on scalar

variables
Switch A switch statement for Perl
Perl6::Binding Implement Perl6 aliasing features
Perl6::Classes First class classes in Perl 5
Perl6::Currying Perl 6 subroutine currying for Perl 5
Perl6::Export Implements the Perl 6 ‘is

export(…)‘ trait
Perl6::Form Implements the Perl 6 ‘form’

built-in
Perl6::Gather Implements the Perl 6 ‘gather/

take’control structure in Perl 5
Perl6::Interpolators Use Perl 6 function-interpolation

syntax
Perl6::Parameters Perl 6-style prototypes with

named parameters
Perl6::Placeholders Perl 6 implicitly declared parame-

ters for Perl 5
Perl6::Say Implements the Perl 6 say (print-

with-newline) function
Perl6::Tokener A Perl 6 tokener. It tokenizes Perl 6.
Perl6::Variables Perl 6 variable syntax for Perl 5
UNIVERSAL::exports Lightweight, universal exporting

of variables
Want Implement the want() command

Table 1: Modules in
Perl6::Bundle

01 use Perl6::Rules;
02
03 grammar Calc {
04 rule number { \d+ }
05 rule op { <[+-]> }
06 rule term :w {
07 <term> <op> <number> |
08 <number> }
09 }
10
11 my $text = "1 + 2 - 3 + 4";
12
13 if($text =~ m/<Calc.term>/) {
14 print "Well-formed!\n";
15 }

Listing 4: regex.pl

[1] Perl6 Development Page:
http://dev.perl.org/perl6

[2] “Perl 6 and Parrot Essentials”, Allison Ran-
dal, Dan Sugalski, Leopold Tötsch, O’Reilly,
2004.

[3] “Quantum Casino”, Michael Schilli, Linux-
Magazine, Issue #38 / January 2004, p61

INFO

