
Without specifying which arguments are
to be used (by appending :$, for exam-
ple), the entire command will be
repeated. There is a special case to
repeat the entire previous command
(!-1), and that is !!. You can also request
the most recent command that starts
with a particular group of letters. Bash
will match as many, or as few, characters
as you give it, looking for the most
recent command that began with all the
specified letters.

$!m
mount /cdrom

For those that would prefer an interac-
tive history, press Control+R, start
typing, and watch bash automatically
find the most recent matching com-
mand.

Advanced users may care to supple-
ment the !$ argument with extra
qualifiers. These extra qualifiers will
retrieve a specific portion of the argu-
ment and no more. They are detailed in
Table 2. These qualifiers work with all
the above options, allowing for some
very powerful, and obtuse, shell control.

These qualifiers can be combined if
separated by colons. They are evaluated
in a left-to-right fashion, for example,

Note that the command is stored in the
history with its components fully substi-
tuted, not the !$ version you type, as can
be seen with,

$ history | tail -3
604 mkdir new_folder
605 cd new_folder
606 history | tail -3

!$ is a special case of a much larger tech-
nique called history substitution The
symbol consists of two components: !,
which indicates which command to use
(in this case, the most recent), and $,
which means the last argument. Both
sections can be replaced with a multi-
tude of different variations. Let us first
look at replacing the $.

Notice that, in general, a colon is
required. This is used to separate the !,
indicating the last command, and the
details of which argument within that
command to use. The command in ques-
tion doesn’t have to be last one, either.
You can retrieve the next-to-the-last com-
mand with !-2, for example.

$ mount /cdrom
$ cp /cdrom/*.pdf /media/library
$ umount !-2:$
umount /cdrom

82 December 2004 www.linux-magazine.com

Why type more than you need
to type? The shell has a few
short symbols that will save

you many keystrokes if you know how to
use them.This article examines historical
substitution and other tricks.

It Was Supposed To Be
So Easy
Was Supposed To Be So Easy. Typing
commands into the shell is all well and
good but can be cumbersome when
we’re presented with long filenames. Tab
completion can help in some cases, but
if there are a lot of files with very similar
names, we usually end up having to type
the whole thing anyway. But in many
circumstances, if tab completion is the
answer, we’re probably asking the wrong
question. We need to ask instead about
history substitution – and !$.

The Last Argument
This curious symbol is a place-holder for
the last argument of the previous com-
mand. !$ is useful for situations like this,

$ mkdir new_folder
$ cd !$
cd new_folder
$

Here you can see that the argument is
substituted directly before execution,
enabling you to see the full command in
the shell before it is run – although you
don’t have time to cancel it if it’s wrong!

The secrets we’re going to learn cannot be summed up in words. In fact, all of

the magic we’ll conjure up within these pages can be represented with the

characters !, $, ?, and -. BY STEVEN GOODWIN

Special Characters in Bash

Bash Magic

Command LineLINUX USER

Symbol Description Typed Example Resultant command Notes
!:0 (zero) Use command !:0 another mkdir another
!:1 (one) Use 1st argument cd !:1 cd new1
Other arguments can be referenced in the same, numeric, manner
!:$ Use last argument cd !:$ cd new2 You may use !$ instead
!:1-2 Use 1st and 2nd arguments echo !:1-2 echo new1 new2
Omitting the first number uses 0 as default. Omitting the last uses the penultimate argument. !:n* uses the n‘th argument
to the end (and is the same as !:n-$)
! All arguments touch ! touch new1 new2
Acts like !:1-$. Useful for handling arguments from scripts, or in creating aliases.You may use !* instead

Table 1: Symbols for History Substitution

$ mplayer U

/media/mp3/rock/file.mp3
$ echo !:1:h:t
rock

One popular trick is to use !* as a safety
net before deleting files. First you start
by checking to ensure that the files you
have targeted targeted backup files are
correct.

$ ls *.bak
one.bak three.bak two.bak

You can delete them with either rm !*,
rm -i !* (which asks for confirmation
before deleting each file) or rm !*:p
(which prints the potential command to
the window, but doesn’t do anything,
acting as secondary check.)

$ rm !*:p
rm *.bak

You can then press the up arrow, or type
!!, to retrieve the last command you just
typed. After you press return, you’ll then

be able to delete the files for real, as fol-
lows:

$!!
rm *.bak

Brackets
Bash uses several different sets of brack-
ets. The (rounded) brackets are for
subshells, the [square] brackets expand
ranges of letters (remember tr [A-Z] [a-z]
from [1]) and {curly} brackets, or
braces, expand each argument within
them and combine it with the rest of the
argument. Braces provide the benefit of
letting the user perform the same opera-

tion to several files. See the following,
for instance:

Create a small hierarchy, U

tom/user, tom/group, tom/all,U
dick/user, dick/group, etc.

$ mkdir -p {tom,dick,harry}U
/{user,group,all}

You cannot include spaces before or after
the commas (although they can be
escaped with \ if necessary), but it is fine
to leave entries blank. Blank entries
enable us to perform tricks like this:

$ cp filename{,.bak}

83www.linux-magazine.com December 2004

LINUX USERCommand Line

Qualifier Description Typed Example Result
h Head cd !$:h cd /media/mp3/rock
t Tail echo !$:t echo new
p Print - don’t execute rm -rf !$:p rm -rf /media/mp3/rock/new
q Quote words cd !$:q cd ‘/media/mp3/rock/new’
x also does this, but breaks at newlines, spaces and tabs
r Remove extension echo !:1:r echo extra/ripped
Any preceding directory is left intact
e Keep only the extension echo !:1:e echo .mp3 It keeps the dot!

Table 2: Extra Qualifiers

per se, but it is a convention amongst
many tools, such as cat. The same effect
can also be achieved by using /dev/stdin
as the input file.

This example uses - to concatenate
standard input with an existing file.

$ cat - original > new
This text appears as the firstU
line in 'new'. Followed by the U

rest of the "original" file
^D
$

And so from one minus sign, to two! The
double minus means “end of parame-
ters.” This symbol provides an elegant
way to tell the shell that whatever fol-
lows is a command argument (like a
filename), even if it looks like an option.
This becomes an essential feature when
you realize that -a is a legitimate file-
name in Linux, as well as a command
line option. Create a file called -a in your
home directory and try to delete it,

$ rm -a
rm: invalid option -- a
Try `rm --help' for more info.
$

The same error would occur if you typed
rm * in a directory where such a file
occurred. However, being surround by so
many other files, the problem would be
less obvious. By using -- to indicate the
end of the parameter list, our intention
can be realized quite simply.

$ rm -- -a

You could also delete this file from a GUI
file manager or with the command rm
./-a, but neither are suitable for a batch
file that has to handle indeterminable
files. In these cases -- should always be
used, since a malicious user could name
his files ‘-a’, ‘-b’, ‘-c’, and so on, hoping
that a file scanner would either misun-
derstand the files or terminate
prematurely, leaving other suspect con-
tent undisturbed.

$? and Exit Status
$? is another useful variable. This exple-
tive holds the exit status. The exit status
describes the result of the last command.
By convention this exit status will be

zero (0) if the last command was suc-
cessful and non-zero if the last command
wasn’t successful. The precise value of
the exit status is determined by the
severity of the error, so a minor infrac-
tion would be one (1), whilst the
inability to execute the command in the
first place would be 127. As well as
chaining commands together, this sym-
bol can be used as part of a self-aware
installer,

01 gawk >/dev/null 2>&1
02 if [$? -eq 0]; then
03 USE_AWK="gawk"
04 else
05 nawk >/dev/null 2>&1
06 if [$? -eq 0]; then
07 USE_AWK="nawk"
08 else
09 echo "I need an awk

- any awk - to run!"
10 exit 1;
11 fi
12 fi

The preceding script picks an available
version of AWK from those installed on
the system. If gawk is reachable, the exit
status return code is 0 and gawk is used.
If gawk is not reachable on the system,
the script continues with nawk. The
order that the versions are referenced in
the script determines the priority of the
versions, while the redirection keeps our
screen tidy. Not every command can
work without arguments, so sometimes
you will have to invoke the help or ver-
sion number to get a zero return code.

Experiment with fitting these Bash
techniques into your own routine.
They’ll save you time and keystrokes. ■

which expands to the arguments file-
name and filename.bak.

$! and the Process ID
The $! symbol holds the process ID of
the last command you ran as a back-
ground process. This is the same ID that
appears on screen:

$ finger steev &
[1] 18959
$ echo $!
18959

This feature can serve as a poor man’s
timeout, whereby commands are run in
the background, and, if they haven’t
completed after a specific time, they are
killed!

01 TEMPFILE=`mktemp`
02 DURATION=$1
03 shift
04
05 $* >$TEMPFILE &
06 PID=$!
07
08 sleep $DURATION
09
10 kill -9 $PID 2>/dev/null
11
12 cat $TEMPFILE
13 rm $TEMPFILE

It would be called thus:

./timeout.sh 2 fingerU
steev@somehost.com

Powers of the Minus Sign
In shell programming, the minus sign
doesn’t have negative connotations, as it
is used in two of its most powerful, and
under-used, features. When used on its
own, a single minus is often used to
denote standard input in place of a file-
name. This is not a feature of the shell

84 December 2004 www.linux-magazine.com

Command LineLINUX USER

Some people set up aliases in their .bashrc or
.alias files to ease the burden of typing.
Some standard inclusions are alias ll='ls -l'
and alias la='ls -A'. However, there are
numerous others referenced by Google and
employed by the web-surfing public. After
all these years, my favourite is still alias
cd..='cd ..' for all those times my fingers miss
the space bar!

Alias

[1] Steven Goodwin:“Hidden in plain sight”,
Linux Magazine, Issue 43 / June 2004,
p48–49

INFO

When builders go down
the pub they talk about
football. Presumably
therefore, when foot-
ballers go down the
pub they talk about
builders! When Steven Goodwin goes
down the pub he doesn’t talk about
football. Or builders. He talks about
computers. Constantly…

TH
E

AU
TH

O
R

